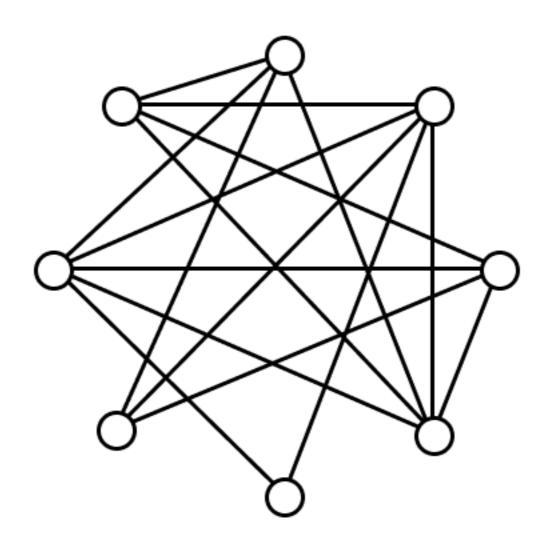
A Tolerant Independent Set Tester

Cameron Seth

March 12 2025

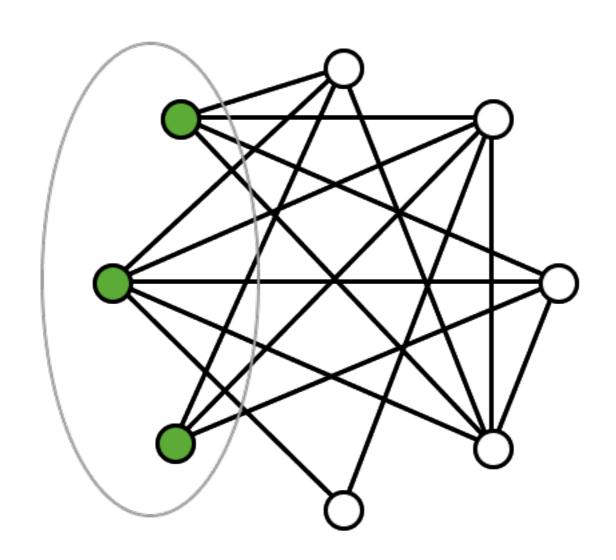
Independent Set Problem

Given a graph G on n vertices, does it have an independent set of size ρn ?



Independent Set Problem

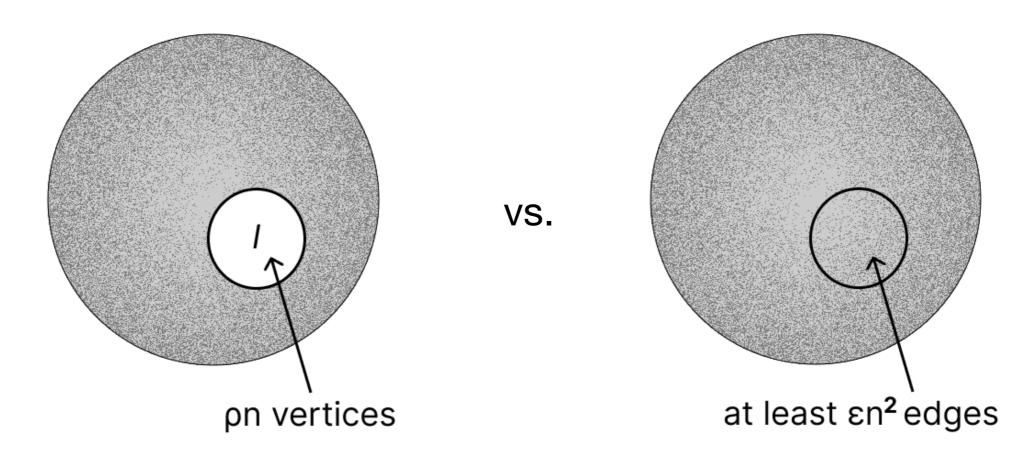
Given a graph G on n vertices, does it have an independent set of size ρn ?



Testing Independent Sets

Problem: Distinguish between the cases:

- (i) G has a ρn independent set, and
- (ii) every induced subgraph of size ρn has at least ϵn^2 edges



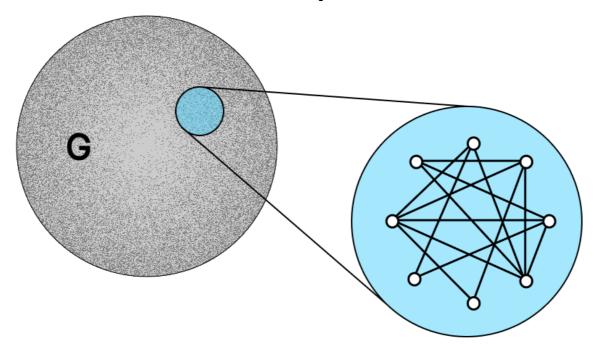
Theorem: Inspecting a random subgraph on $\tilde{O}(\rho/\epsilon^4)$ vertices is sufficient for distinguishing between (i) and (ii) (whp).

[Goldreich, Goldwasser, Ron '98]

Definitions

An ϵ -tester for the ρn -independent set property is an algorithm that samples a set S of s random vertices, examines the induced subgraph G[S], and distinguishes between the cases (with high probability):

- (i) G has a ρn independent set, and
- (ii) every induced subgraph of size ρn has at least ϵn^2 edges (ϵ far)



s is the sample complexity of the tester.

Testing Independent Sets

Theorem: There exists an ϵ —tester for the ρn independent set property with sample complexity $\tilde{O}(\rho/\epsilon^4)$.

[Goldreich, Goldwasser, Ron '98]

Testing Independent Sets

Theorem: There exists an ϵ —tester for the ρn independent set property with sample complexity $\tilde{O}(\rho/\epsilon^4)$.

[Goldreich, Goldwasser, Ron '98]

Theorem: There exists an ϵ —tester for the ρn independent set property with sample complexity $\tilde{O}(\rho^3/\epsilon^2)$, [Blais, Seth '23]

and any such tester has sample complexity $\Omega(\rho^3/\epsilon^2)$.

[Feige, Langberg, Schechtman '04]

Weakness with Standard Testing

Standard Testing Problem: Distinguish between the cases:

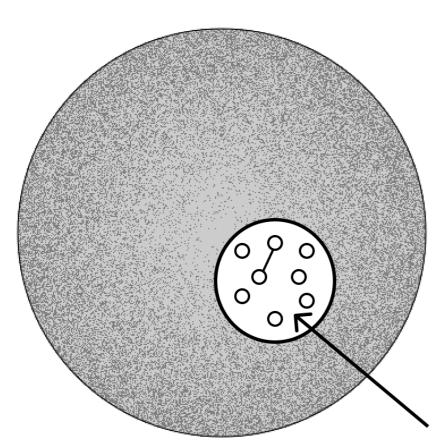
- (i) G has a ρn independent set, and
- (ii) every induced subgraph of size ρn has at least ϵn^2 edges

Weakness with Standard Testing

Standard Testing Problem: Distinguish between the cases:

- (i) G has a ρn independent set, and
- (ii) every induced subgraph of size ρn has at least ϵn^2 edges

Question: What if input graph has a set $U \subset V$ with $|U| = \rho n$ such that G[U] has exactly one edge?



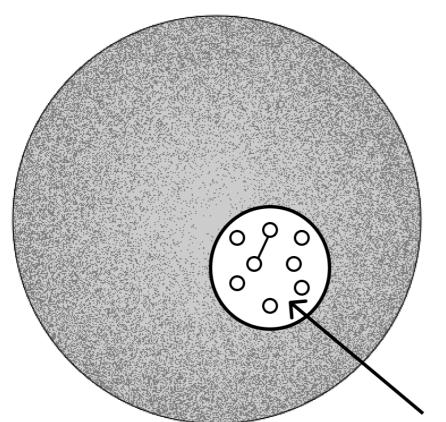
ho n vertices with 1 edge

Weakness with Standard Testing

Standard Testing Problem: Distinguish between the cases:

- (i) G has a ρn independent set, and
- (ii) every induced subgraph of size ρn has at least ϵn^2 edges

Question: What if input graph has a set $U \subset V$ with $|U| = \rho n$ such that G[U] has exactly one edge?



Answer: Testing algorithms have no guarantee on this type of input!!

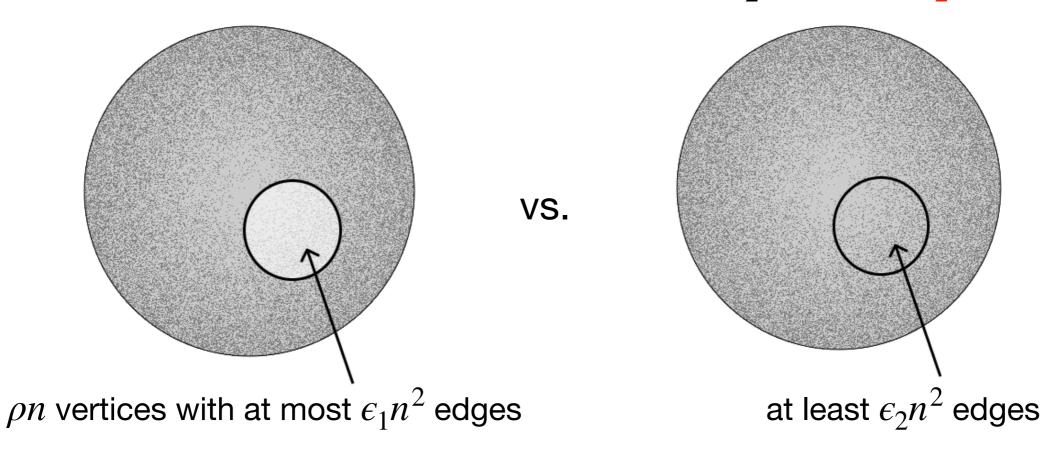
Ideally we would like the algorithm to accept this type of graph.

 ρn vertices with 1 edge

Tolerant Testing Independent Sets

Problem: For $\epsilon_1 < \epsilon_2$, distinguish between the cases:

- (i) G has an induced subgraph of size ρn with less than $\epsilon_1 n^2$ edges (ϵ_1 close)
- (ii) Every induced subgraph of size ρn has at least $\epsilon_2 n^2$ edges (ϵ_2 far)



An algorithm that, with high probability, distinguishes between (i) and (ii) is called an (ϵ_1, ϵ_2) —tester.

[Parnas, Ron, Rubinfeld '06]

Tolerant Testing Independent Sets

Problem: For $\epsilon_1 < \epsilon_2$, distinguish between the cases:

- (i) G has an induced subgraph of size ρn with less than $\epsilon_1 n^2$ edges (ϵ_1 -close)
- (ii) Every induced subgraph of size ρn has at least $\epsilon_2 n^2$ edges (ϵ_2 far)

An algorithm that, with high probability, distinguishes between (i) and (ii) is called an (ϵ_1, ϵ_2) —tester.

Tolerant Testing Independent Sets

Problem: For $\epsilon_1 < \epsilon_2$, distinguish between the cases:

- (i) G has an induced subgraph of size ρn with less than $\epsilon_1 n^2$ edges (ϵ_1 close)
- (ii) Every induced subgraph of size ρn has at least $\epsilon_2 n^2$ edges (ϵ_2 far)

An algorithm that, with high probability, distinguishes between (i) and (ii) is called an (ϵ_1, ϵ_2) —tester.

Remarks:

- Generalizes the standard testing problem ($\epsilon_1 = 0$)
- In general ϵ_1 may be a function of ϵ_2
- In some other settings (bounded degree model, boolean strings), there is exponential gap between the query complexity of ϵ —testing and $(\tilde{\Theta}(\epsilon), \epsilon)$ —tolerant testing.

[Fischer, Fortnow '05]

[Goldreich, Wigderson '22]

Main Result

Theorem: There is a $\left(\frac{\epsilon}{\text{polylog}(1/\epsilon)},\epsilon\right)$ — tolerant tester for the ρn independent set property with sample complexity $\tilde{O}(\rho^3/\epsilon^2)$. [This Work]

Main Result

Theorem: There is a $\left(\frac{\epsilon}{\text{polylog}(1/\epsilon)}, \epsilon\right)$ — tolerant tester for the ρn independent set property with sample complexity $\tilde{O}(\rho^3/\epsilon^2)$. [This Work]

Remarks:

- Matches the (optimal) sample complexity bound for ϵ —testing
- Generalizes container method approach of Blais, Seth '23
- Best prior result is from a general result for all graph partition properties, which gives sample complexity of roughly $(1/\epsilon)^{12}$

[Fiat, Ron '21]

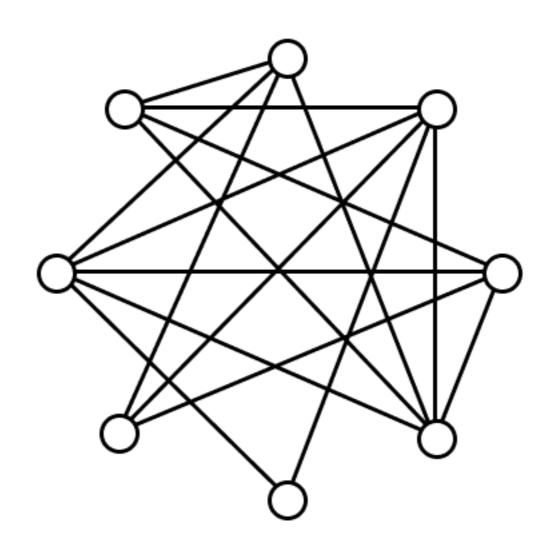
[Goldreich, Goldwasser, Ron '98]

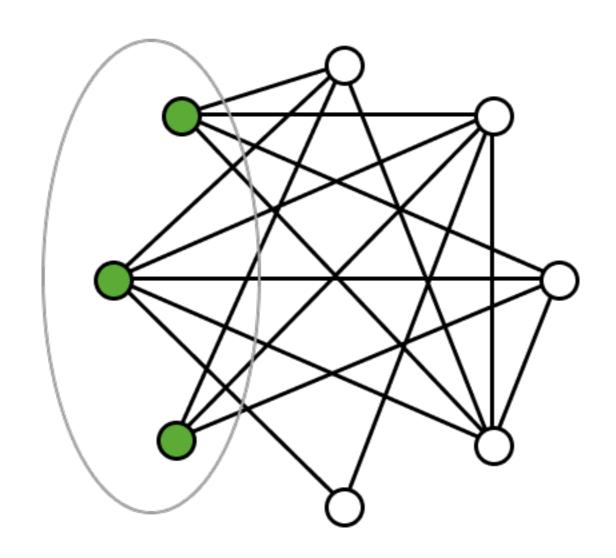
Outline of Talk

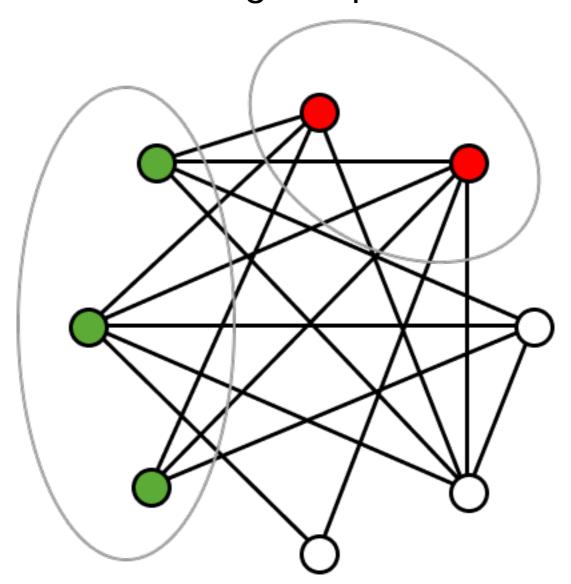
- Main technique to prove theorem: graph container method
 - What is the container method?
 - How to use the container method to prove testing results
 [Blais, Seth '23]
- A new graph container lemma for sparse subgraphs

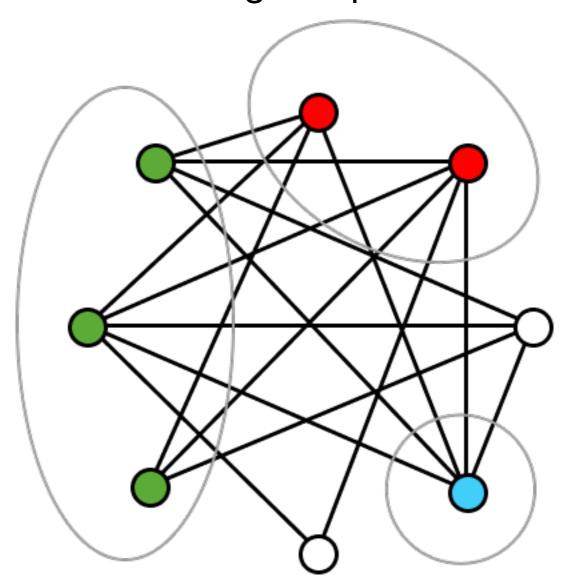
[This Work]

- Proof ideas of new container lemma
- Another application of new container lemma

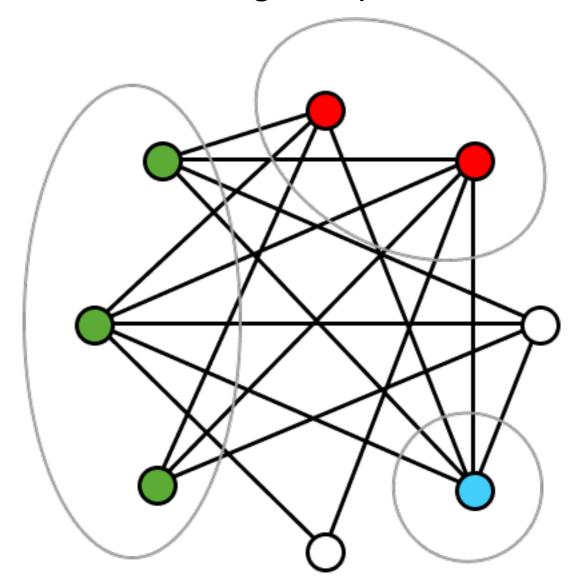






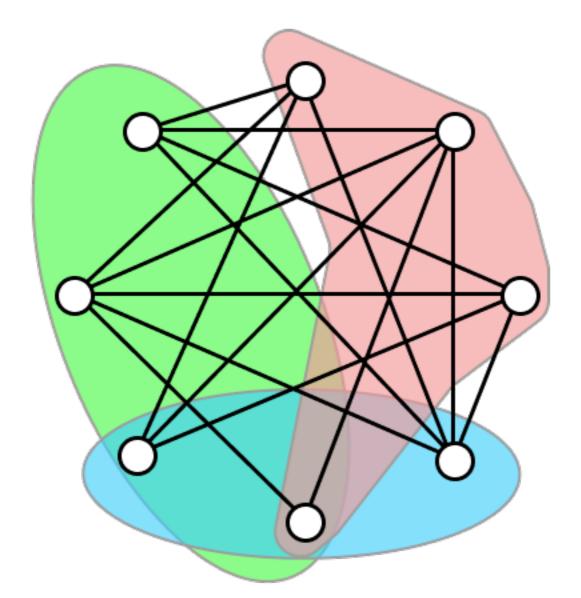


Answer: A tool for characterizing independent sets in some graphs.



Informal Idea: For any graph satisfying some "nice" conditions, all independent sets in the graph are clustered together into a small number of containers (each container is a subset of vertices).

Answer: A tool for characterizing independent sets in some graphs.



Informal Idea: For any graph satisfying some "nice" conditions, all independent sets in the graph are clustered together into a small number of containers (each container is a subset of vertices).

An Initial Graph Container Lemma

Lemma: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies:

1.
$$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$
,

- 2. for every $C \in \mathcal{C}$, $|C| < \rho n$.
- 3. for every independent set I, there exists $C \in \mathscr{C}$ with $I \subseteq C$.

[Kleitman, Winston '82]

An Initial Graph Container Lemma

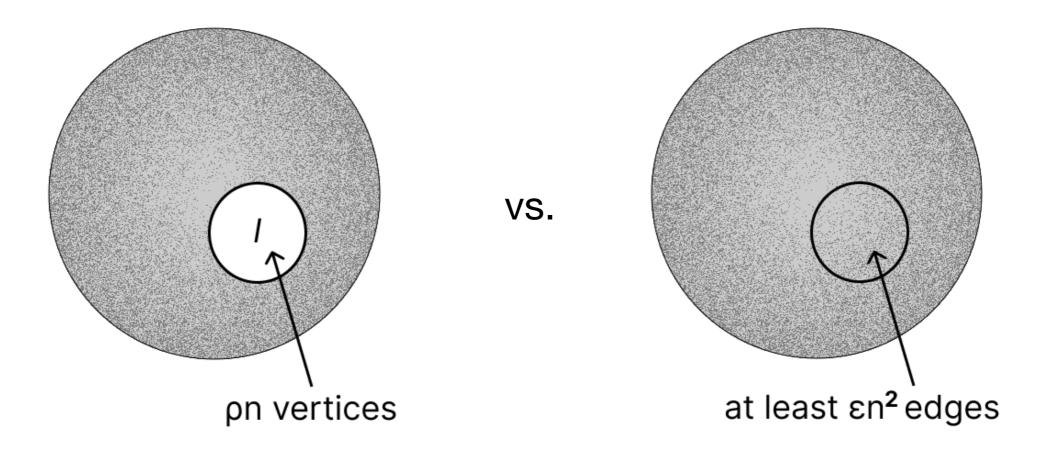
Lemma: For any ϵ, ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies:

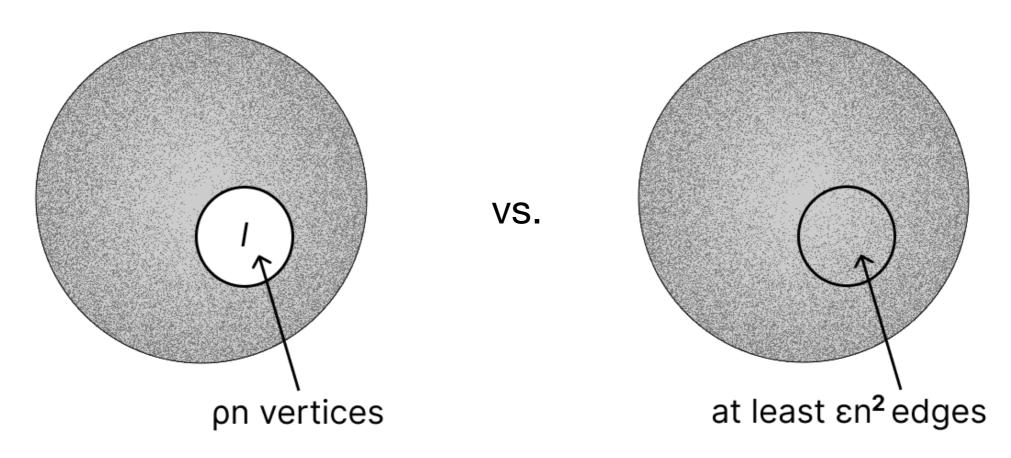
1.
$$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$
,

- 2. for every $C \in \mathcal{C}$, $|C| < \rho n$.
- 3. for every independent set I, there exists $C \in \mathscr{C}$ with $I \subseteq C$.

[Kleitman, Winston '82]

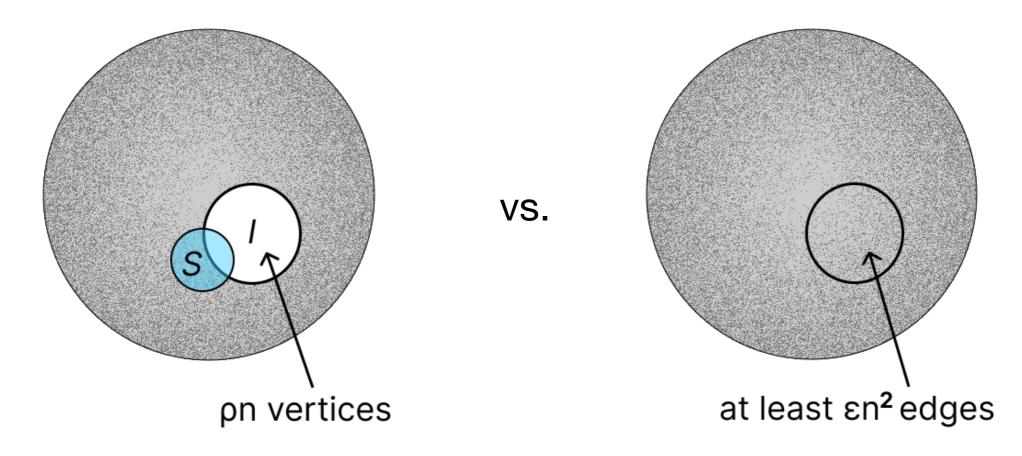
Note: for survey of combinatorial applications see "Counting Indepedent Sets in Graphs" by Samotij or "The method of hypergraph containers" by Balogh, Morris, and Samotij.





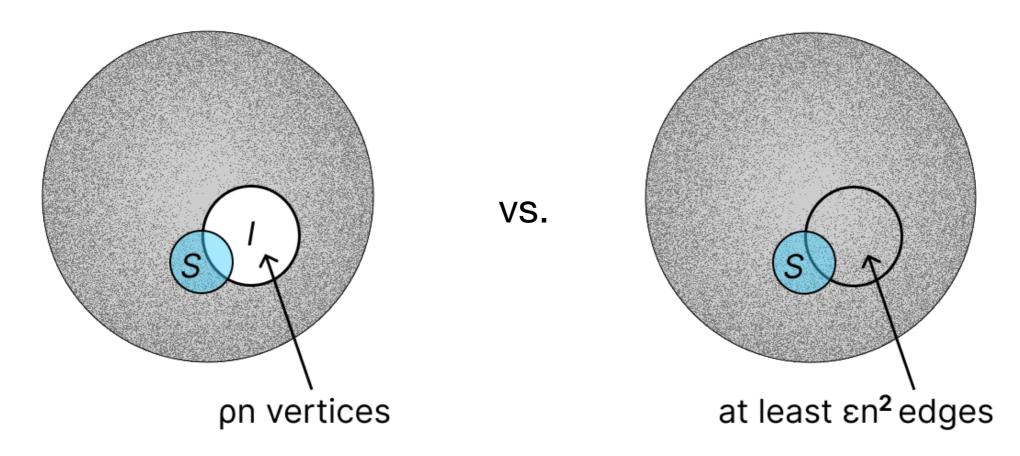
Testing Algorithm: Take a random sample S of $s \sim \rho^3/\epsilon^2$ vertices, check if the induced subgraph G[S] has a ρs independent set.

[Blais, Seth '23]



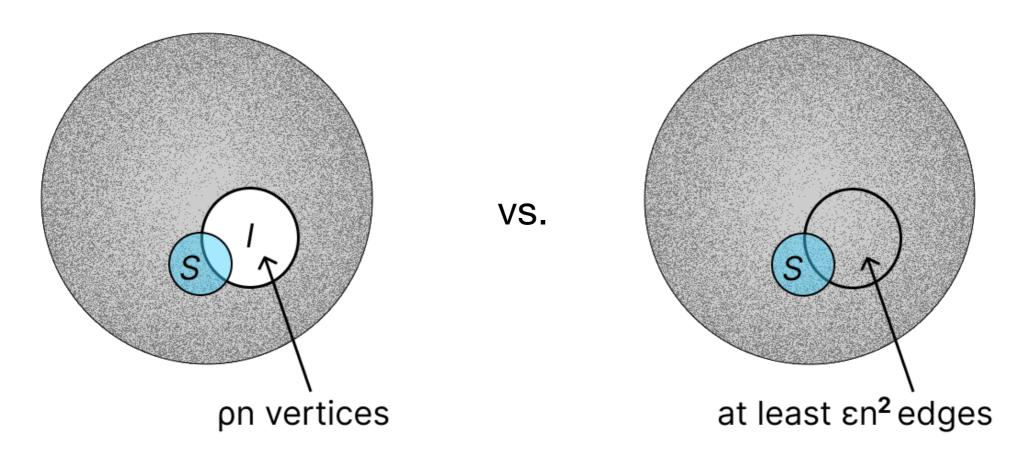
Testing Algorithm: Take a random sample S of $s \sim \rho^3/\epsilon^2$ vertices, check if the induced subgraph G[S] has a ρs independent set.

[Blais, Seth '23]



Testing Algorithm: Take a random sample S of $s \sim \rho^3/\epsilon^2$ vertices, check if the induced subgraph G[S] has a ρs independent set.

[Blais, Seth '23]



Testing Algorithm: Take a random sample S of $s \sim \rho^3/\epsilon^2$ vertices, check if the induced subgraph G[S] has a ρs independent set.

[Blais, Seth '23]

Key Challenge: If G is ϵ -far from having a ρn independent set, show that S has a ρs independent set with only small probability.

Application of Container Lemma

Key Challenge: If G is ε -far from having a ρn independent set, show that S has a ρs independent set with only small probability.

Application of Container Lemma

Key Challenge: If G is ϵ -far from having a ρn independent set, show that S has a ρs independent set with only small probability.

Naive Approach:

Union bound over all possible independent sets in the graph.

Application of Container Lemma

Key Challenge: If G is ϵ -far from having a ρn independent set, show that S has a ρs independent set with only small probability.

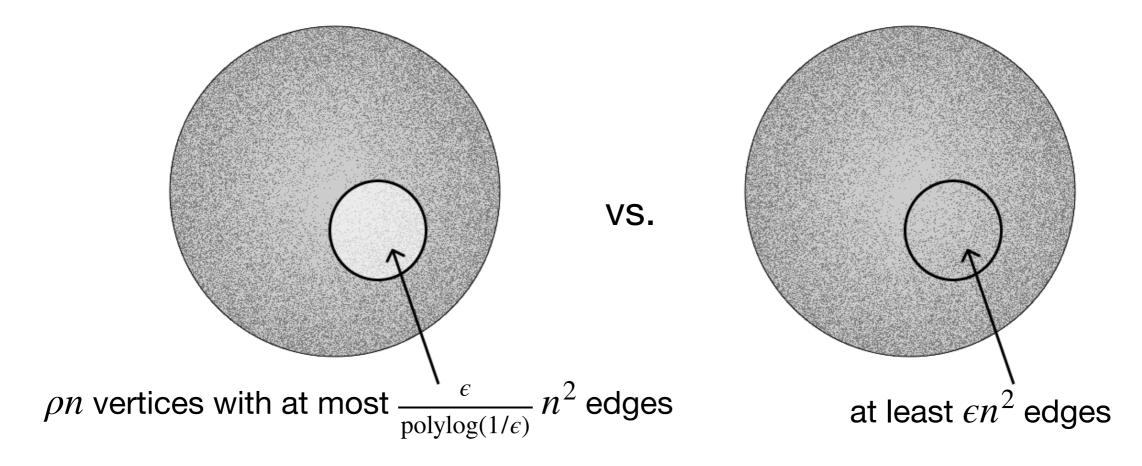
Naive Approach:

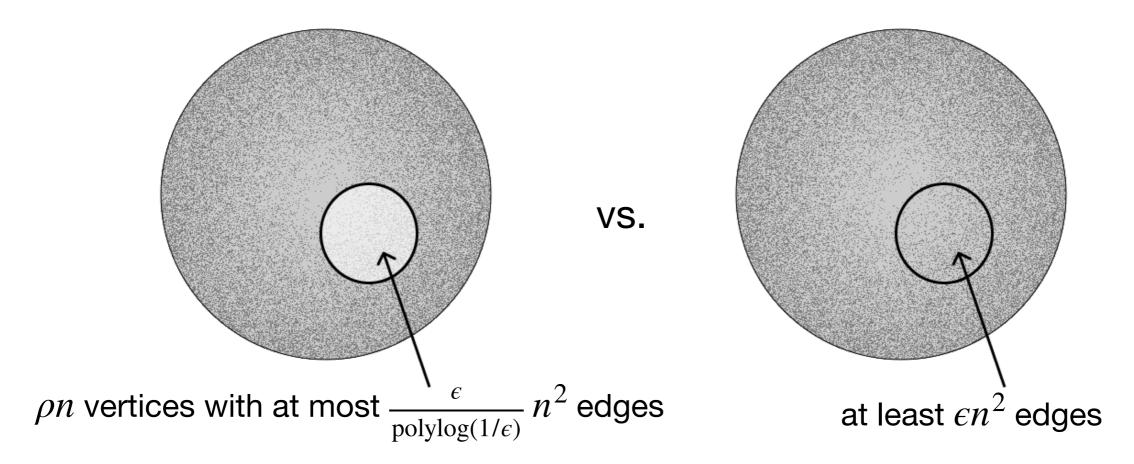
Union bound over all possible independent sets in the graph.

Using Container Lemma*:

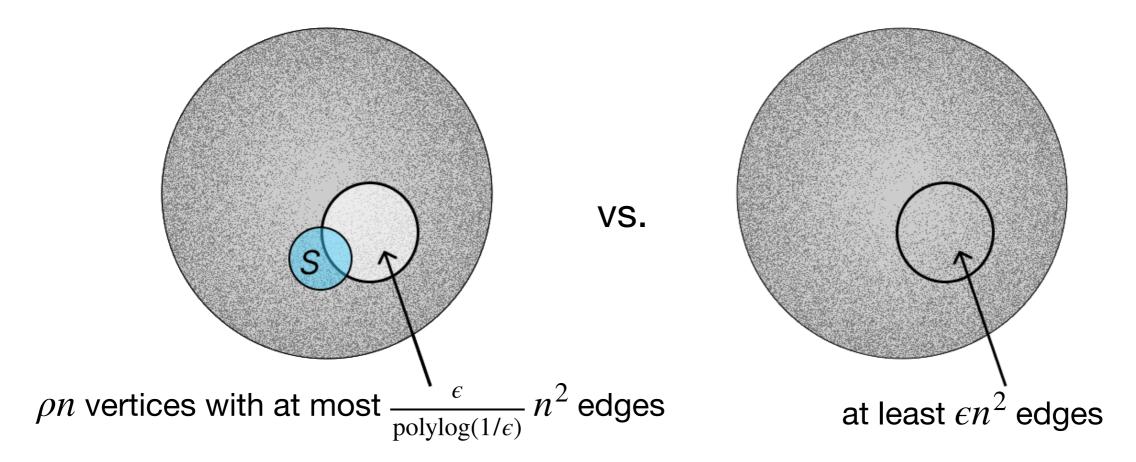
- Any independent set is contained in a container!
- The probability that S has ρs vertices from any container is small because each container is significantly smaller than ρn .
- Union bound over relatively small number of containers.

^{* [}Blais, Seth '23] proved a stronger container lemma compared to the lemma of [Kleitman, Winston '82]

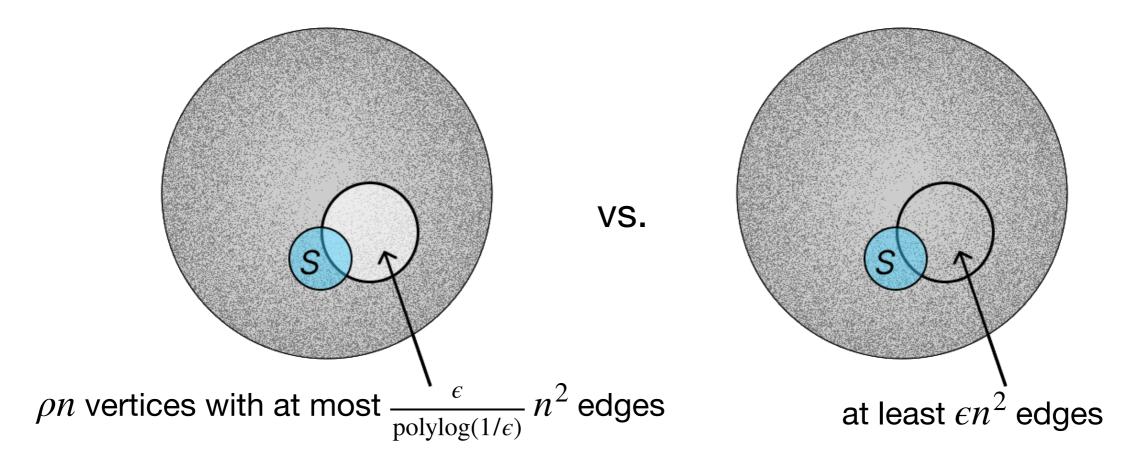




Testing Algorithm: Take a random sample S of $s \sim \rho^3/\epsilon^2$ vertices, check if the induced subgraph G[S] has an induced subgraph of size ρs with less than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)} s^2$ edges.

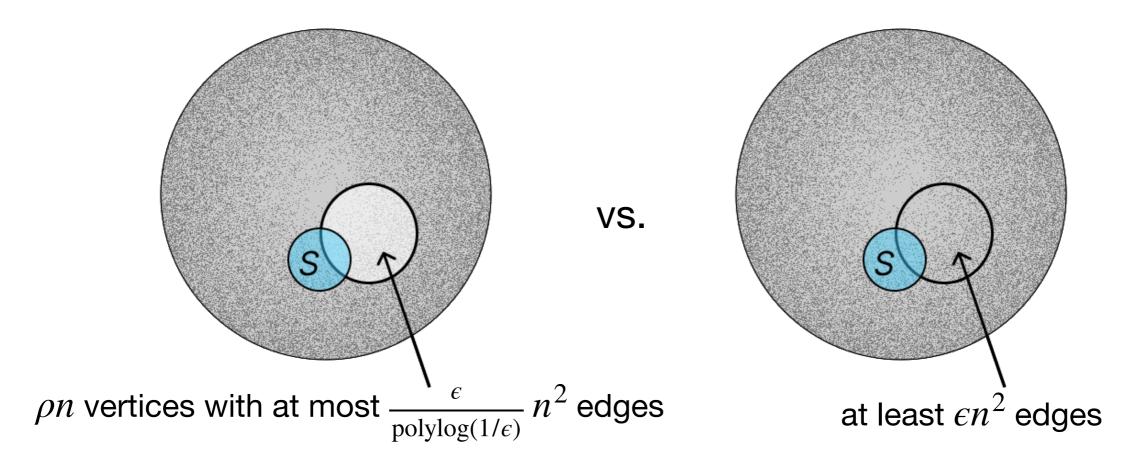


Testing Algorithm: Take a random sample S of $s \sim \rho^3/\epsilon^2$ vertices, check if the induced subgraph G[S] has an induced subgraph of size ρs with less than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)} s^2$ edges.



Testing Algorithm: Take a random sample S of $s \sim \rho^3/\epsilon^2$ vertices, check if the induced subgraph G[S] has an induced subgraph of size ρs with less than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)} s^2$ edges.

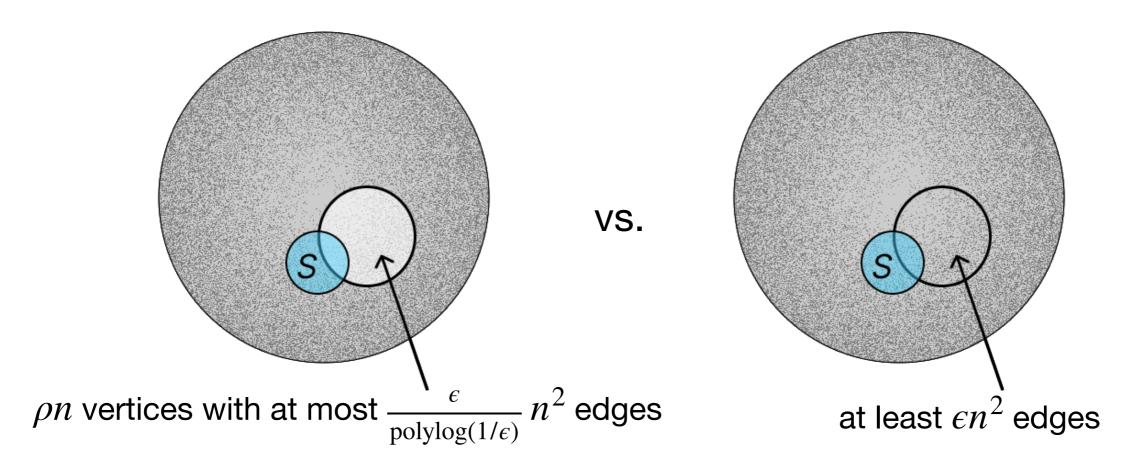
Towards a Tolerant Tester



Testing Algorithm: Take a random sample S of $s \sim \rho^3/\epsilon^2$ vertices, check if the induced subgraph G[S] has an induced subgraph of size ρs with less than $\frac{\epsilon}{\text{polylog}(1/\epsilon)} s^2$ edges.

Key Challenge: If G is ε -far from having a ρn independent set, show that S has a ρs sparse set with only small probability.

Towards a Tolerant Tester



Testing Algorithm: Take a random sample S of $s \sim \rho^3/\epsilon^2$ vertices, check if the induced subgraph G[S] has an induced subgraph of size ρs with less than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)} s^2$ edges.

Key Challenge: If G is ε -far from having a ρn independent set, show that S has a ρs sparse set with only small probability.

Induced subgraph has less than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)} \, s^2$ edges

Desired Lemma?: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies:

1.
$$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$
,

- 2. for every $C \in \mathcal{C}$, $|C| < \rho n$.
- 3. For every set $J\subseteq V$ such that G[J] has less than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)}|J|^2$ edges, there exists $C\in\mathscr{C}$ with $J\subseteq C$.

Desired Lemma?: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies:

1.
$$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$
,

- 2. for every $C \in \mathcal{C}$, $|C| < \rho n$.
- 3. For every set $J\subseteq V$ such that G[J] has less than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)}|J|^2$ edges, there exists $C\in\mathscr{C}$ with $J\subseteq C$.

This is not possible (more details in a few slides)

Desired Lemma?: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies:

1.
$$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$
,

- 2. for every $C \in \mathcal{C}$, $|C| < \rho n$.
- 3. For every set $J\subseteq V$ such that G[J] has less than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)}|J|^2$ edges, there exists $C\in\mathscr{C}$ with $J\subseteq C$.

No prior results of this form. Only similar results on "sparse subgraphs" apply to subgraphs with smaller density or bounded max degree.

This is not possible (more details in a few slides)

[Nenadov '24] [Saxton, Thomason '15]

Lemma*: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies:

1.
$$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$
,

- 2. for every $C \in \mathcal{C}$, $|C| < \rho n$.
- 3. For every set $J\subseteq V$ such that G[J] has less than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)}|J|^2$ edges, there exists $C\in\mathscr{C}$ and α such that $|C|\leq (1-\alpha)\rho n$ and

$$|C \cap J| \ge \left(1 - \frac{\alpha}{2}\right)|J|.$$

^{*} Omitting some details

Lemma*: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies:

1.
$$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$
,

- 2. for every $C \in \mathcal{C}$, $|C| < \rho n$.
- 3. For every set $J\subseteq V$ such that G[J] has less than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)}\left|J\right|^2$ edges, there exists $C\in\mathscr{C}$ and α such that $|C|\leq (1-\alpha)\rho n$ and

$$|C \cap J| \ge \left(1 - \frac{\alpha}{2}\right)|J|.$$

Informally: each sparse set is "mostly" contained in a container

^{*} Omitting some details

Lemma*: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies:

1.
$$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$
,

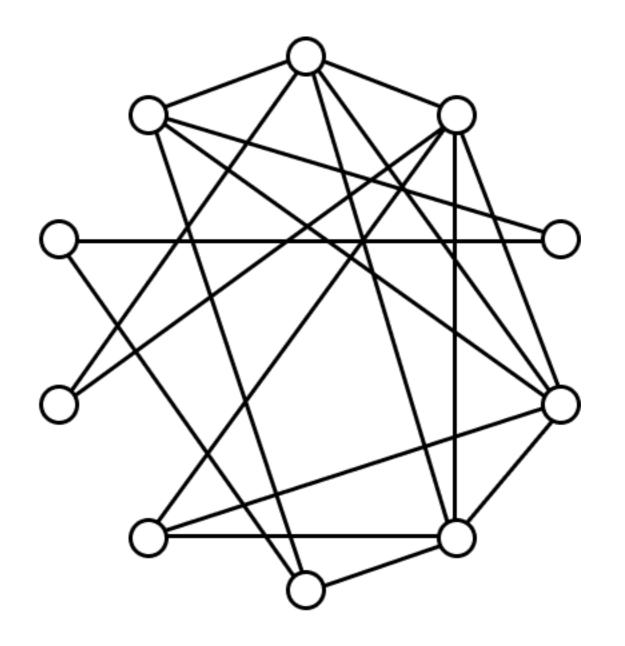
- 2. for every $C \in \mathcal{C}$, $|C| < \rho n$.
- Using this new container lemma instead of standard container lemma used by Blais, Seth ('23) we can the prove theorem.
- 3. For every set $J\subseteq V$ such that G[J] has less than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)}\left|J\right|^2$ edges, there exists $C\in\mathscr{C}$ and α such that $|C|\leq (1-\alpha)\rho n$ and

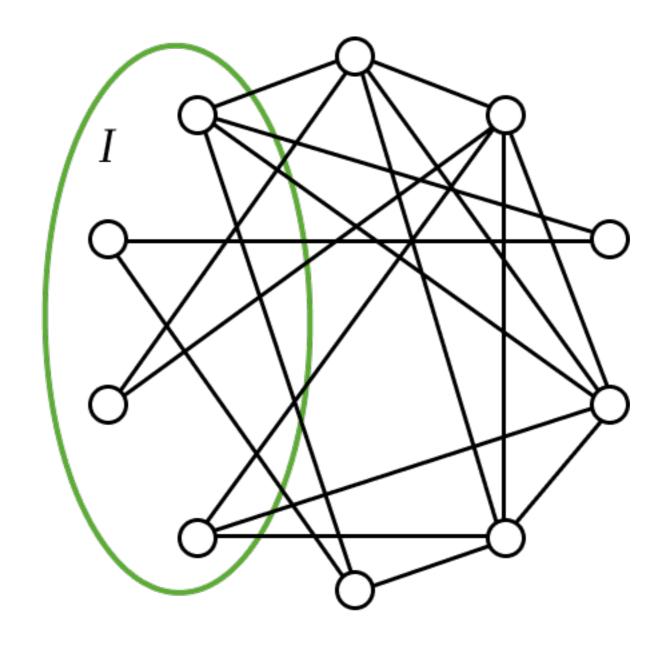
$$|C \cap J| \ge \left(1 - \frac{\alpha}{2}\right)|J|.$$

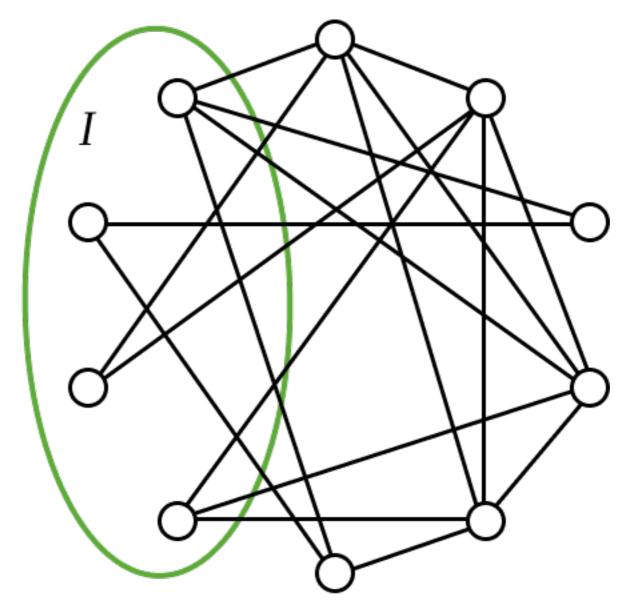
Informally: each sparse set is "mostly" contained in a container

^{*} Omitting some details

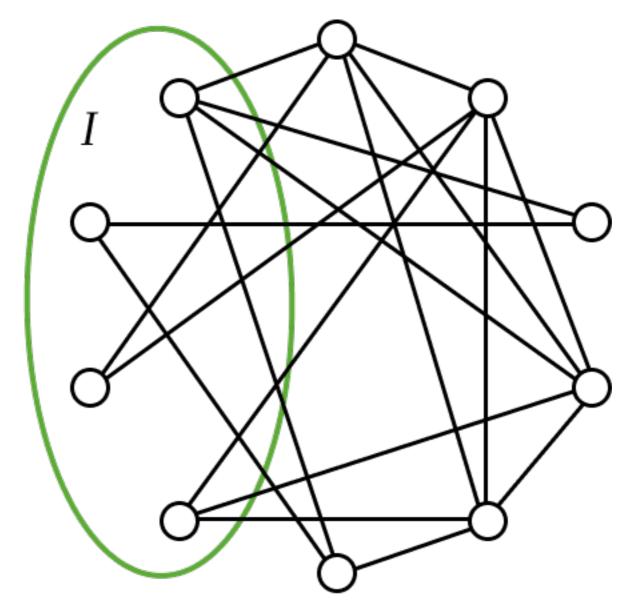
Warmup: How to prove Container Lemma for Independent Sets - An Encoding Argument



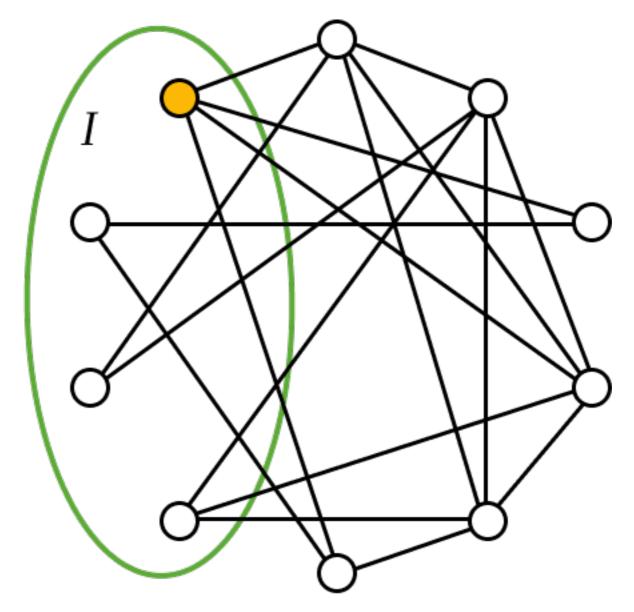




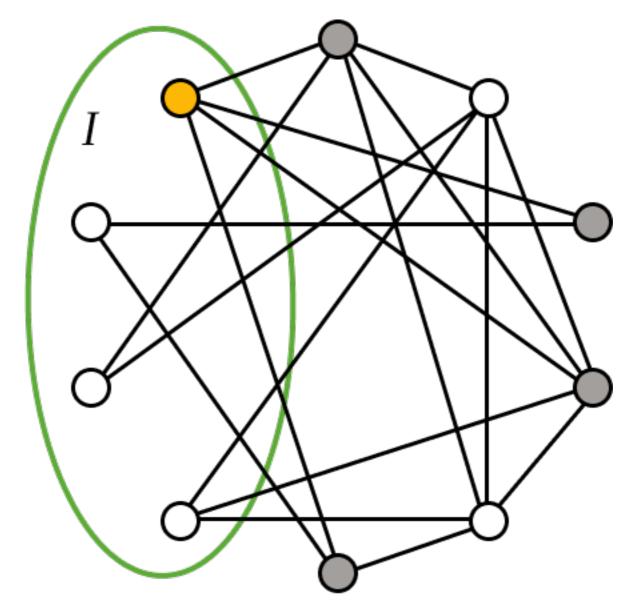
How can I give you the most information about an independent set I by just telling you about one of the vertices in I?



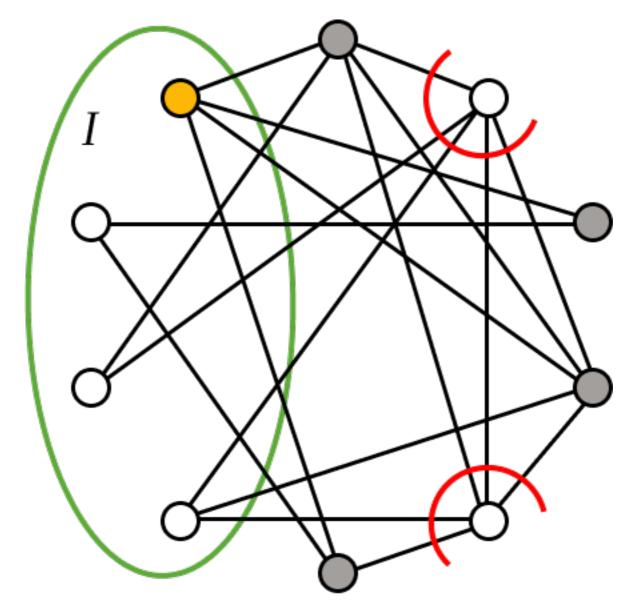
How can I give you the most information about an independent set I by just telling you about one of the vertices in I?



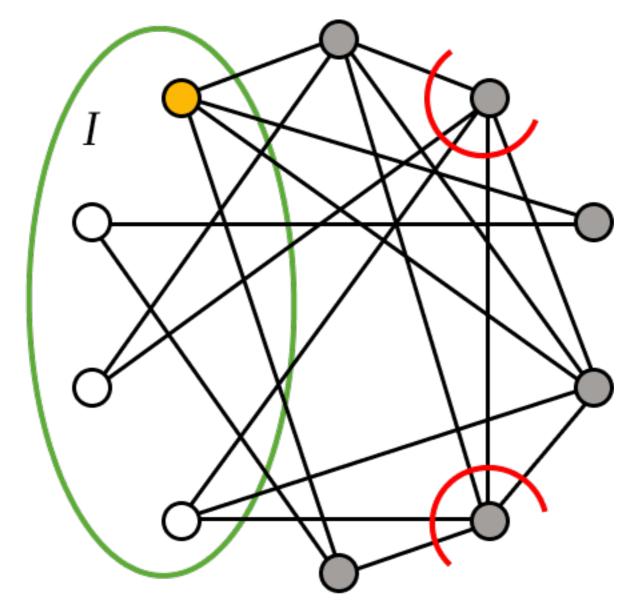
How can I give you the most information about an independent set I by just telling you about one of the vertices in I?



How can I give you the most information about an independent set I by just telling you about one of the vertices in I?



How can I give you the most information about an independent set I by just telling you about one of the vertices in I?



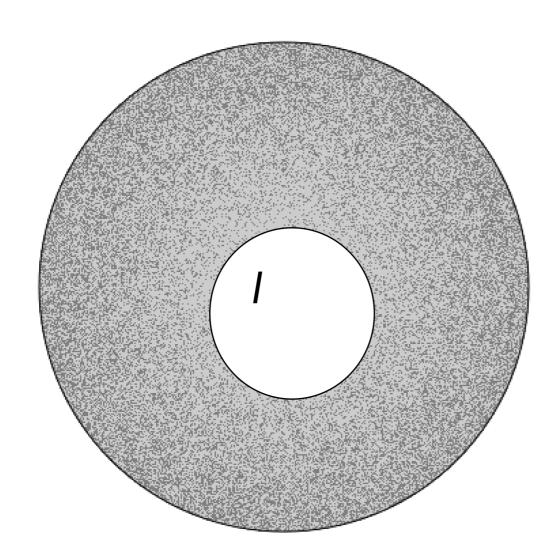
How can I give you the most information about an independent set I by just telling you about one of the vertices in I?

Input: Graph G and an independent set I

- Initialize fingerprint $F = \emptyset$ and container C = V
- Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C.

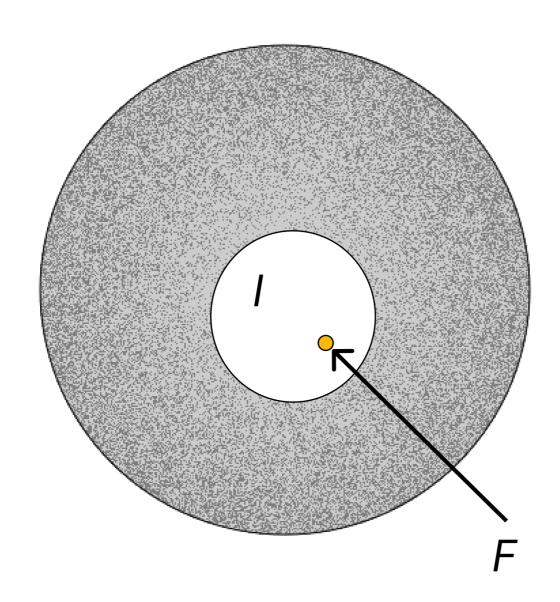
Input: Graph G and an independent set I

- Initialize fingerprint $F = \emptyset$ and container C = V
- Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C.



Input: Graph G and an independent set I

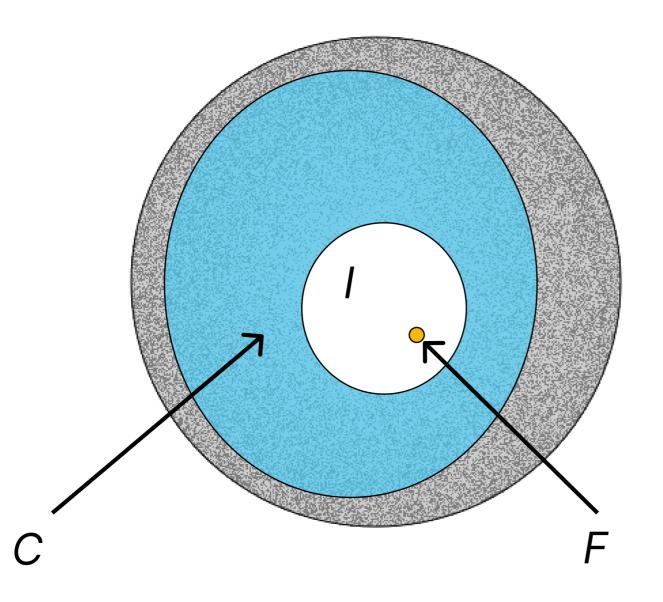
- Initialize fingerprint $F = \emptyset$ and container C = V
- Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C.



1st Iteration

Input: Graph G and an independent set I

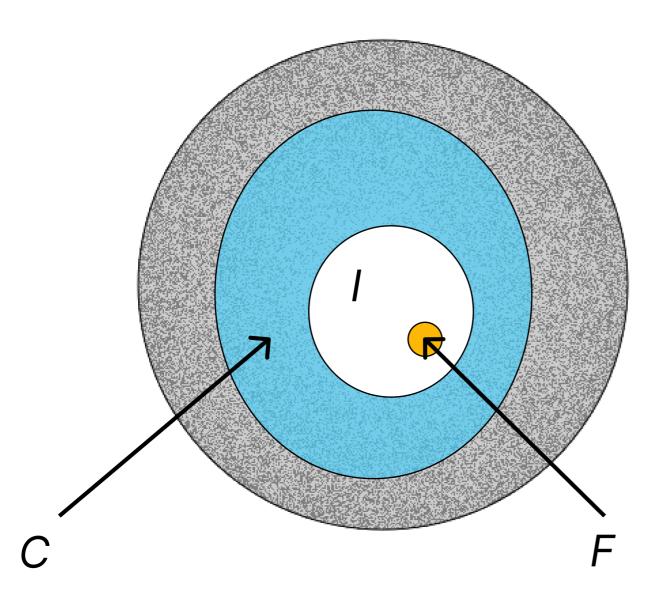
- Initialize fingerprint $F = \emptyset$ and container C = V
- Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C.



1st Iteration

Input: Graph G and an independent set I

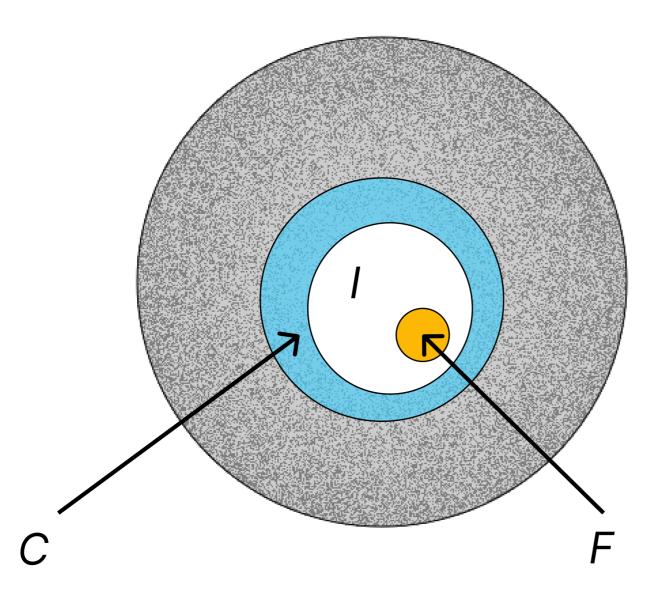
- Initialize fingerprint $F = \emptyset$ and container C = V
- Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C.



2nd Iteration

Input: Graph G and an independent set I

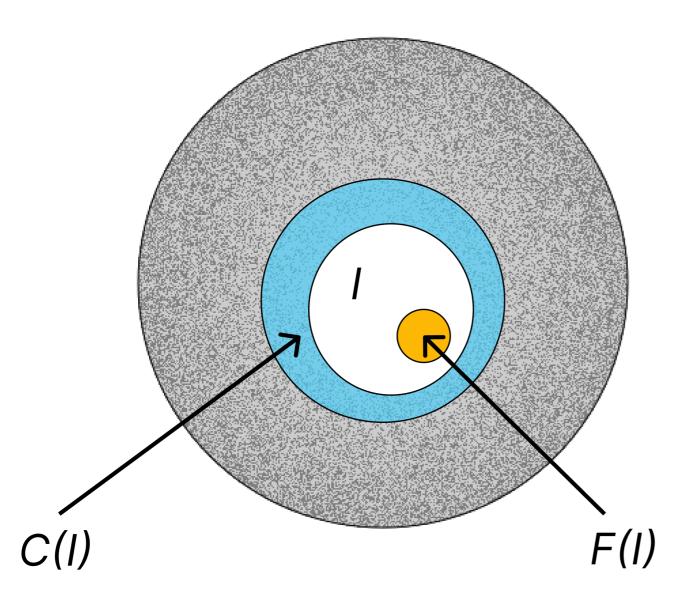
- Initialize fingerprint $F = \emptyset$ and container C = V
- Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C.



Final Iteration

Input: Graph G and an independent set I

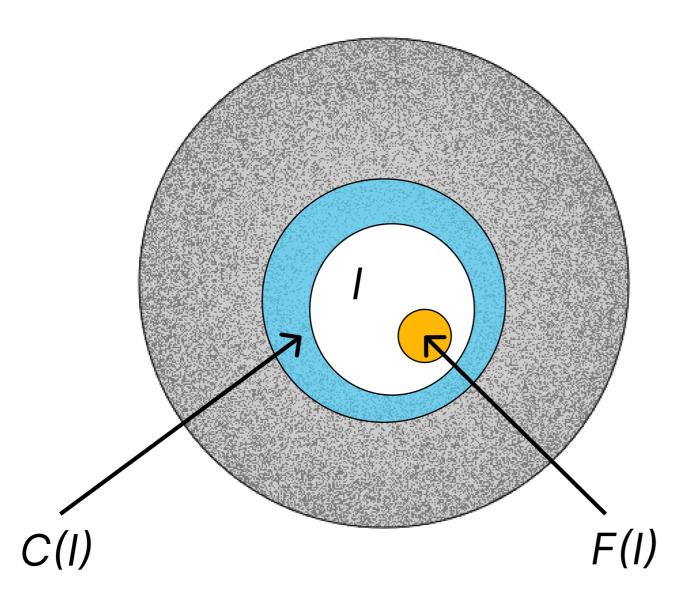
- Initialize fingerprint $F = \emptyset$ and container C = V
- Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C.



Final Iteration

Input: Graph G and an independent set I

- Initialize fingerprint $F = \emptyset$ and container C = V
- Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C.



Final Iteration

Key Observations:

- $I \subseteq C(I)$
- C(I) = C(F(I))

Lemma: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies:

1.
$$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$
,

2. for every $C \in \mathcal{C}$, $|C| < \rho n$.

- [Kleitman, Winston '82]
- 3. for every independent set I, there exists $C \in \mathscr{C}$ with $I \subseteq C$.

Lemma: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies:

1.
$$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$
,

2. for every $C \in \mathcal{C}$, $|C| < \rho n$.

- [Kleitman, Winston '82]
- 3. for every independent set I, there exists $C \in \mathcal{C}$ with $I \subseteq C$.

Question: how do we construct the collection of containers?

Lemma: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies:

1.
$$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$
,

2. for every $C \in \mathcal{C}$, $|C| < \rho n$.

[Kleitman, Winston '82]

3. for every independent set I, there exists $C \in \mathcal{C}$ with $I \subseteq C$.

Question: how do we construct the collection of containers?

Answer:

Lemma: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies:

1.
$$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$
,

2. for every $C \in \mathcal{C}$, $|C| < \rho n$.

[Kleitman, Winston '82]

3. for every independent set I, there exists $C \in \mathcal{C}$ with $I \subseteq C$.

Question: how do we construct the collection of containers? **Answer:**

Let $\mathscr{C} = \{C(I) : I \text{ is an independent set in } G\}$

Lemma: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies:

1.
$$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$
,

2. for every $C \in \mathcal{C}$, $|C| < \rho n$.

- [Kleitman, Winston '82]
- 3. for every independent set I, there exists $C \in \mathcal{C}$ with $I \subseteq C$.

Question: how do we construct the collection of containers?

Answer:

Let
$$\mathscr{C} = \{C(I) : I \text{ is an independent set in } G\}$$

= $\{C(F(I)) : I \text{ is an independent set in } G\}$

Lemma: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies:

1.
$$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$
,

2. for every $C \in \mathcal{C}$, $|C| < \rho n$.

- [Kleitman, Winston '82]
- 3. for every independent set I, there exists $C \in \mathcal{C}$ with $I \subseteq C$.

Question: how do we construct the collection of containers?

Answer:

Let
$$\mathscr{C} = \{C(I) : I \text{ is an independent set in } G\}$$

= $\{C(F(I)) : I \text{ is an independent set in } G\}$
= $\{C(F) : F = F(I) \text{ for some independent set } I \text{ in } G\}$

How to prove new Container Lemma for Sparse Sets - An Encoding Argument

A Container Lemma For Sparse Sets (restated)

Lemma*: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies:

1.
$$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$
,

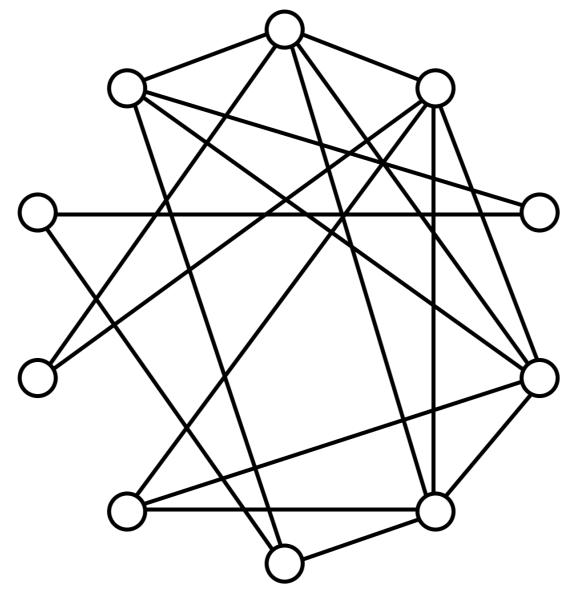
- 2. for every $C \in \mathcal{C}$, $|C| < \rho n$.
- 3. For every set $J\subseteq V$ such that G[J] has less than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)}|J|^2$ edges, there exists $C\in\mathscr{C}$ and α such that $|C|\leq (1-\alpha)\rho n$ and

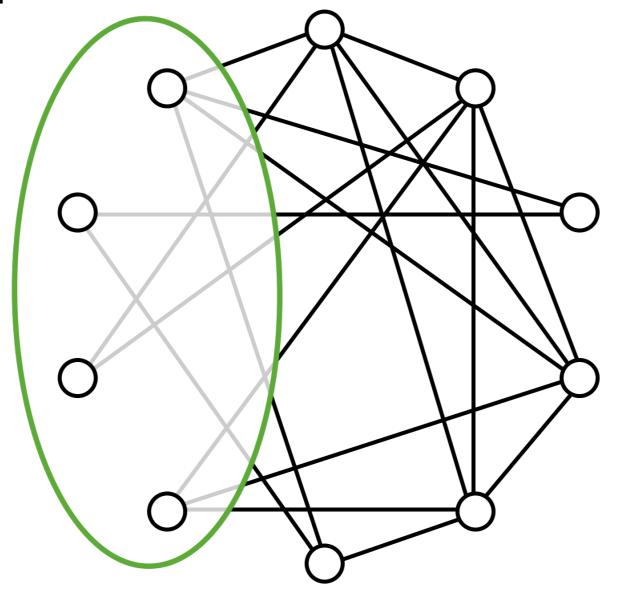
$$|C \cap J| \ge \left(1 - \frac{\alpha}{2}\right)|J|.$$

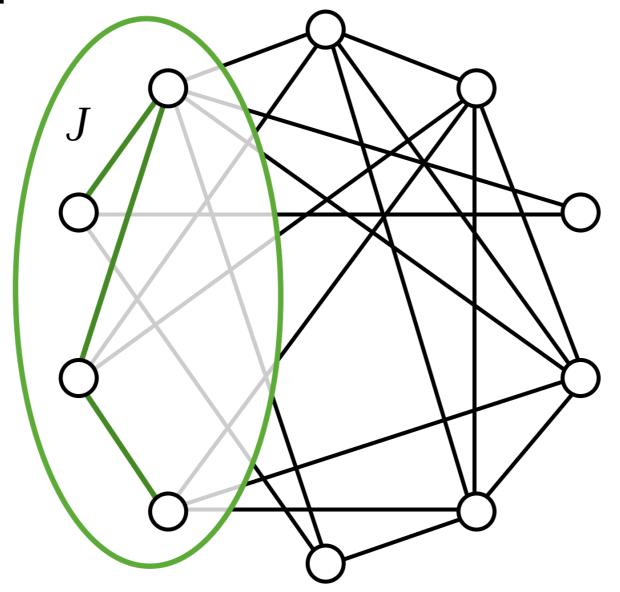
^{*} Omitting some details

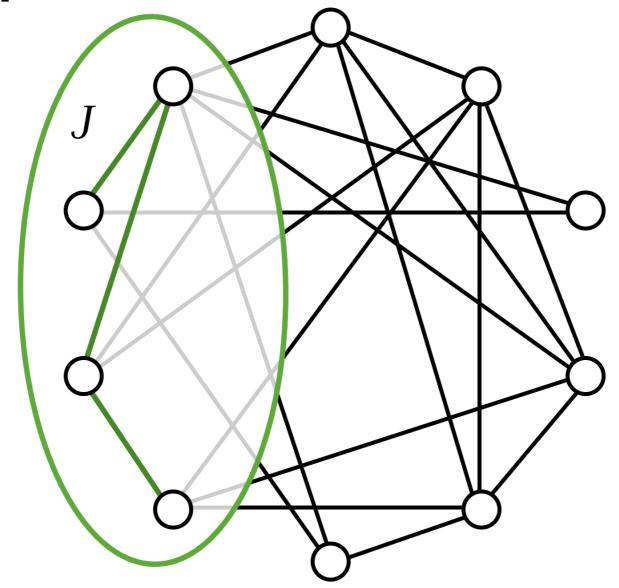
Encoding Sparse Sets

Encoding Sparse Sets







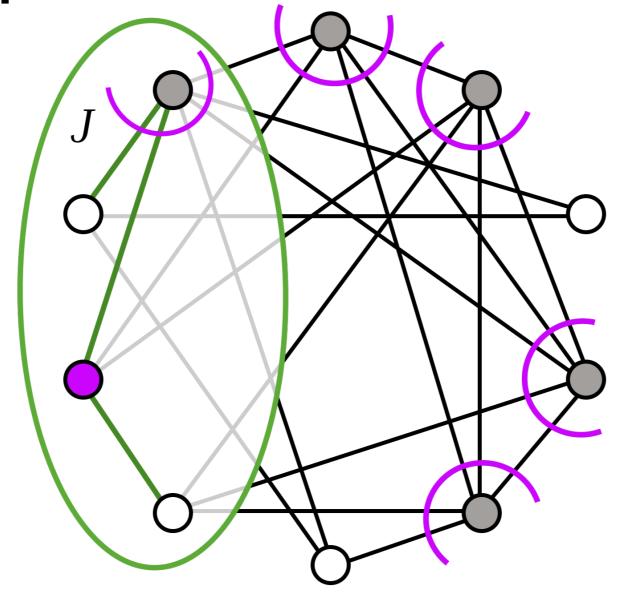


How can I give you the most information about a sparse set J by just telling you about one (or two) of the vertices in J?



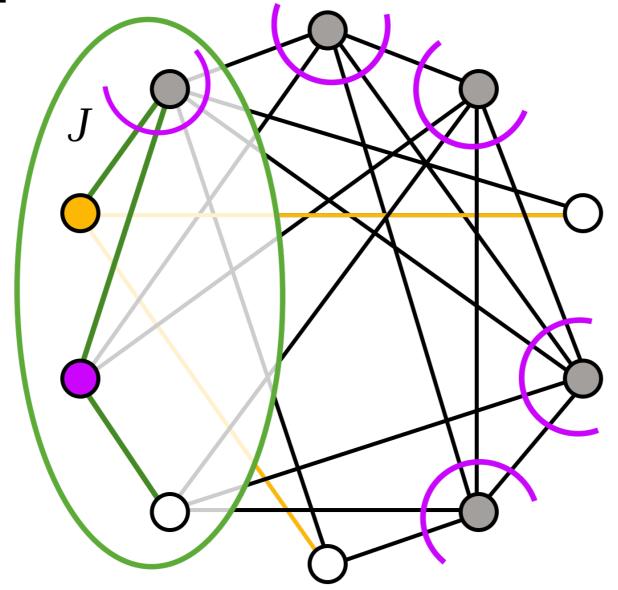
How can I give you the most information about a sparse set J by just telling you about one (or two) of the vertices in J?

Answer: Send on and remove higher degree vertices



How can I give you the most information about a sparse set J by just telling you about one (or two) of the vertices in J?

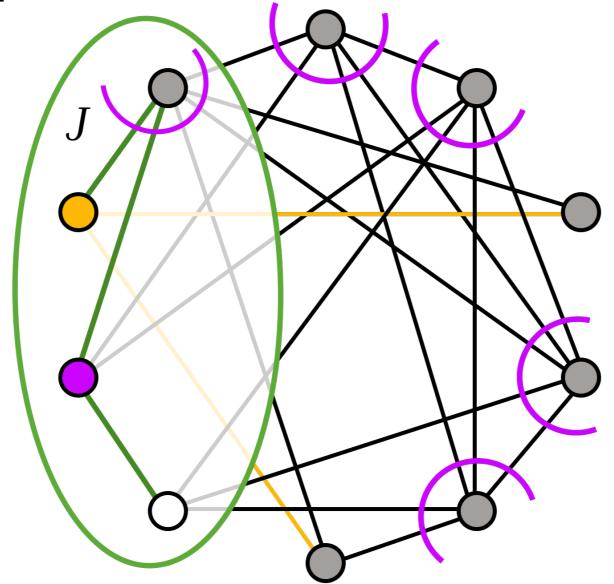
Answer: Send on and remove higher degree vertices



How can I give you the most information about a sparse set J by just telling you about one (or two) of the vertices in J?

Answer: Send on and remove higher degree vertices

Send on and remove neighbours



How can I give you the most information about a sparse set J by just telling you about one (or two) of the vertices in J?

Answer: Send on and remove higher degree vertices

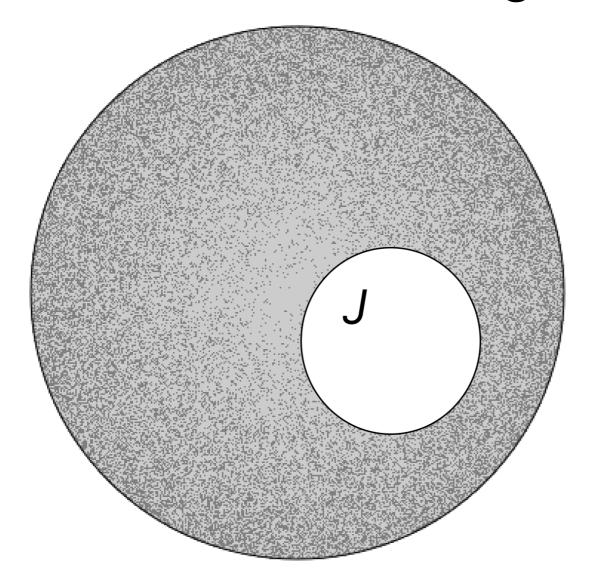
Send O and remove neighbours

Input: Graph G and a sparse set J

- Initialize fingerprint $F=\varnothing$ and container C=V
- Repeat while G[C] has more than ϵn^2 edges
 - select a vertex $v \in J$ and an operation of "remove neighbours" or "remove higher degree vertices" that maximizes the following:

vertices removed from C by operation # vertices in J removed from C by operation

• apply operation to container, add \boldsymbol{v} and operation to \boldsymbol{F}

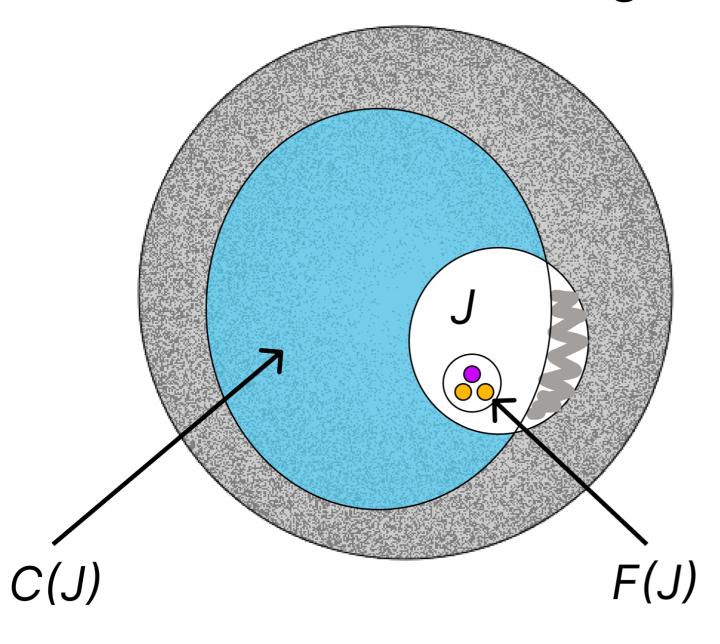


Input: Graph G and a sparse set J

- Initialize fingerprint $F = \emptyset$ and container C = V
- Repeat while G[C] has more than ϵn^2 edges
 - select a vertex $v \in J$ and an operation of "remove neighbours" or "remove higher degree vertices" that maximizes the following:

vertices removed from C by operation # vertices in J removed from C by operation

• apply operation to container, add \boldsymbol{v} and operation to \boldsymbol{F}

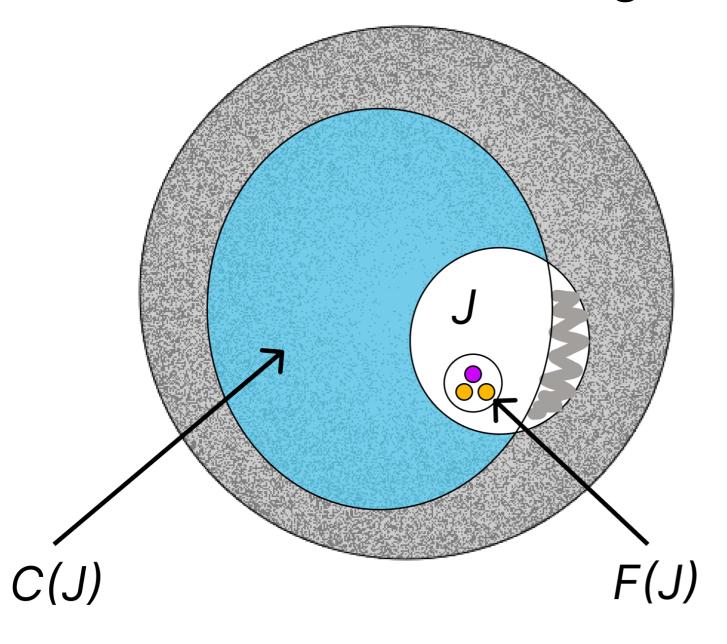


Input: Graph G and a sparse set J

- Initialize fingerprint $F=\emptyset$ and container C=V
- Repeat while G[C] has more than ϵn^2 edges
 - select a vertex $v \in J$ and an operation of "remove neighbours" or "remove higher degree vertices" that maximizes the following:

vertices removed from C by operation # vertices in J removed from C by operation

• apply operation to container, add \boldsymbol{v} and operation to \boldsymbol{F}



Input: Graph G and a sparse set J

- Initialize fingerprint $F = \emptyset$ and container C = V
- Repeat while G[C] has more than ϵn^2 edges
 - select a vertex $v \in J$ and an operation of "remove neighbours" or "remove higher degree vertices" that maximizes the following:

vertices removed from C by operation # vertices in J removed from C by operation

apply operation to container, add v and operation to F

Observations:

- C(J) can be reconstructed from F(J)
- J is NOT fully contained in C(J)

Lemma: Let G=(V,E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Let $J\subseteq V$ have less than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|^2$ edges. Then the final container C(J) contains at least $\left(1-\frac{1}{\log(1/\epsilon)}\right)$ fraction of J.

Lemma: Let G=(V,E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Let $J\subseteq V$ have less than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|^2$ edges. Then the final container C(J) contains at least $\left(1-\frac{1}{\log(1/\epsilon)}\right)$ fraction of J.

Proof Idea:

Show that in every step the procedure removes "much" more from the current container ${\cal C}$ than from ${\cal J}$ (relatively).

Lemma: Let G=(V,E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Let $J\subseteq V$ have less than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|^2$ edges. Then the final container C(J) contains at least $\left(1-\frac{1}{\log(1/\epsilon)}\right)$ fraction of J.

Proof Idea:

Show that in every step the procedure removes "much" more from the current container ${\cal C}$ than from ${\cal J}$ (relatively).

Claim: In every step of procedure where G[C] has more than ϵn^2 edges:

Lemma: Let G=(V,E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Let $J\subseteq V$ have less than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|^2$ edges. Then the final container C(J) contains at least $\left(1-\frac{1}{\log(1/\epsilon)}\right)$ fraction of J.

Proof Idea:

Show that in every step the procedure removes "much" more from the current container ${\cal C}$ than from ${\cal J}$ (relatively).

Claim: In every step of procedure where G[C] has more than ϵn^2 edges:

$$\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$$

Claim: In every step of procedure where G[C] has more than ϵn^2 edges:

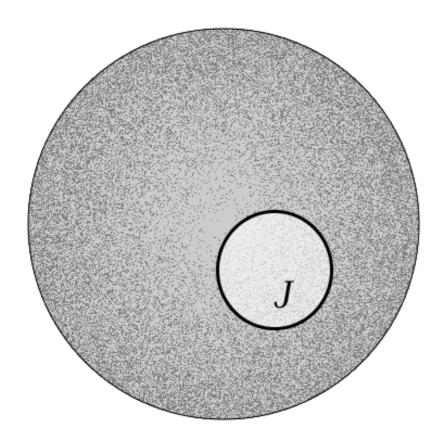
 $\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$

Example 1: Suppose G[C] is the random graph on n vertices with edge density ϵ , and plant the sparse set J (has less than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|^2$ edges).

Claim: In every step of procedure where G[C] has more than ϵn^2 edges:

 $\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$

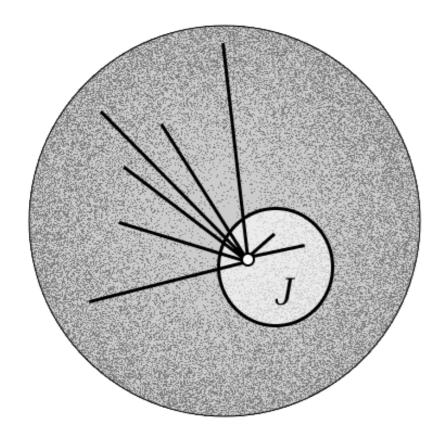
Example 1: Suppose G[C] is the random graph on n vertices with edge density ϵ , and plant the sparse set J (has less than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|^2$ edges).



Claim: In every step of procedure where G[C] has more than ϵn^2 edges:

 $\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$

Example 1: Suppose G[C] is the random graph on n vertices with edge density ϵ , and plant the sparse set J (has less than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|^2$ edges).

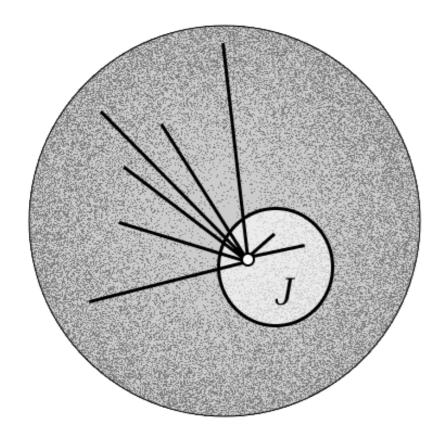


• Pick a vertex $v \in J$ with degree less than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|$ in G[J].

Claim: In every step of procedure where G[C] has more than ϵn^2 edges:

 $\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$

Example 1: Suppose G[C] is the random graph on n vertices with edge density ϵ , and plant the sparse set J (has less than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|^2$ edges).



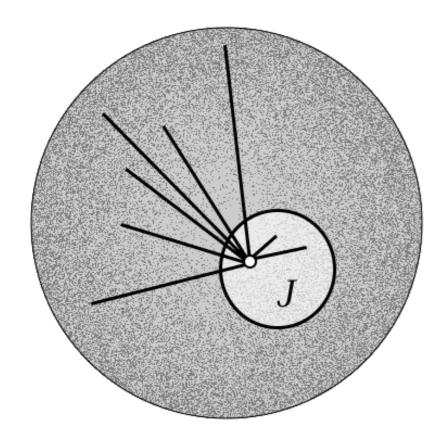
• Pick a vertex $v \in J$ with degree less than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|$ in G[J].

Such a vertex exists because this is the average degree in G[J]

Claim: In every step of procedure where G[C] has more than ϵn^2 edges:

 $\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$

Example 1: Suppose G[C] is the random graph on n vertices with edge density ϵ , and plant the sparse set J (has less than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|^2$ edges).



• Pick a vertex $v \in J$ with degree less than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|$ in G[J].

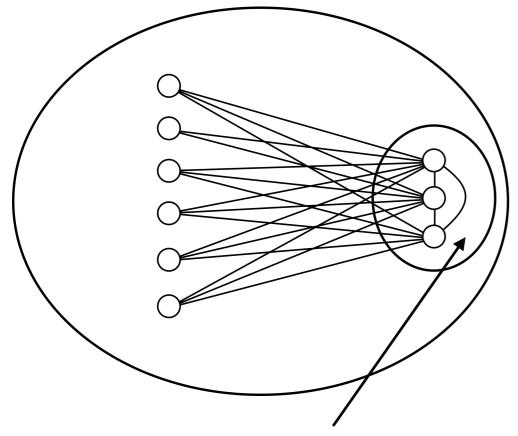
Such a vertex exists because this is the average degree in G[J]

• Using "remove neighbours" operation, can remove ϵn vertices from C and less than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|$ vertices of J from C.

Claim: In every step of procedure where G[C] has more than ϵn^2 edges:

$$\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$$

Example 2: Suppose G[C] has ϵn vertices with degree n.

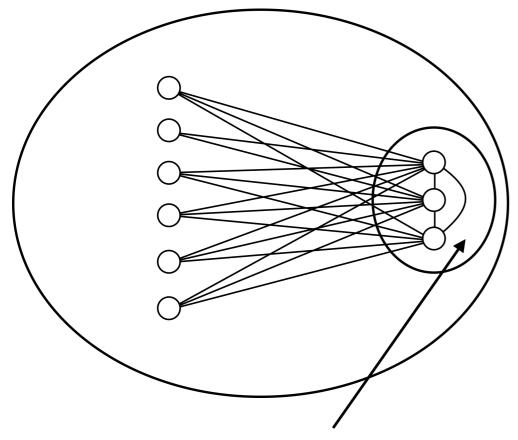


 ϵn vertices adjacent to everything

Claim: In every step of procedure where G[C] has more than ϵn^2 edges:

$$\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$$

Example 2: Suppose G[C] has ϵn vertices with degree n.



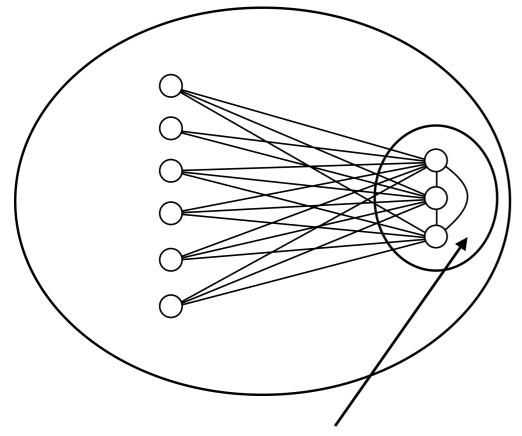
 ϵn vertices adjacent to everything

• If there is a vertex $v \in J$ with degree less than $\frac{1}{\log(1/\epsilon)}|J|$ in G[J] and degree n in G[C] then select v and "remove neighbours" operation

Claim: In every step of procedure where G[C] has more than ϵn^2 edges:

$$\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$$

Example 2: Suppose G[C] has ϵn vertices with degree n.



 ϵn vertices adjacent to everything

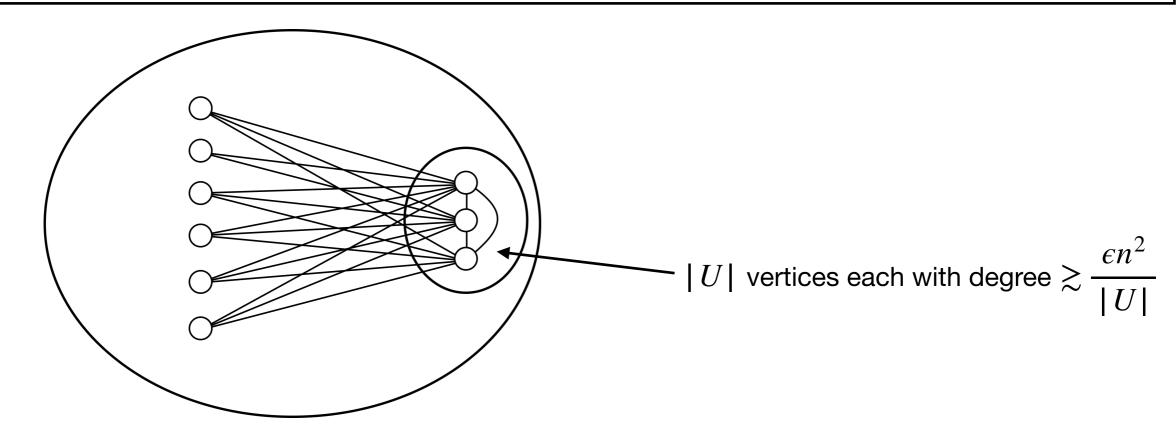
- If there is a vertex $v \in J$ with degree less than $\frac{1}{\log(1/\epsilon)}|J|$ in G[J] and degree n in G[C] then select v and "remove neighbours" operation
- Otherwise, select $v \in J$ with degree less than n in G[C] and "remove higher degree vertices" operation, will remove ϵn vertices from C and less than $\frac{\epsilon}{\log(1/\epsilon)}|J|$ vertices of J from C

Claim: In every step of procedure where G[C] has more than ϵn^2 edges:

$$\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$$

Proof: Use the following lemma to generalize 2 cases.

Lemma: If G[C] has more than ϵn^2 edges, then there exists $U \subseteq V$ such that every vertex in U has degree at least (roughly) $\frac{\epsilon n^2}{|U|}$ in G[C].



Claim: In every step of procedure where G[C] has more than ϵn^2 edges:

$$\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$$

Proof: Use the following lemma to generalize 2 cases.

Lemma: If G[C] has more than ϵn^2 edges, then there exists $U \subseteq V$ such that every vertex in U has degree at least (roughly) $\frac{\epsilon n^2}{|U|}$ in G[C].

Claim: In every step of procedure where G[C] has more than ϵn^2 edges:

$$\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$$

Proof: Use the following lemma to generalize 2 cases.

Lemma: If G[C] has more than ϵn^2 edges, then there exists $U \subseteq V$ such that every vertex in U has degree at least (roughly) $\frac{\epsilon n^2}{|U|}$ in G[C].

• If there is a vertex $v\in J$ with degree less than $\frac{\epsilon n}{\log(1/\epsilon)|U|}|J|$ in G[J] and degree at least $\frac{\epsilon n^2}{|U|}$ in G[C] then can select v and "remove neighbours" operation

Claim: In every step of procedure where G[C] has more than ϵn^2 edges:

$$\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$$

Proof: Use the following lemma to generalize 2 cases.

Lemma: If G[C] has more than ϵn^2 edges, then there exists $U \subseteq V$ such that every vertex in U has degree at least (roughly) $\frac{\epsilon n^2}{|U|}$ in G[C].

- If there is a vertex $v\in J$ with degree less than $\frac{\epsilon n}{\log(1/\epsilon)|U|}|J|$ in G[J] and degree at least $\frac{\epsilon n^2}{|U|}$ in G[C] then can select v and "remove neighbours" operation
- Otherwise, select $v \in J$ with degree less than $\frac{\epsilon n^2}{|U|}$ in G[C] and "remove higher degree vertices" operation, will remove |U| vertices from C and less than $\frac{|U|}{\log(1/\epsilon)n}|J| \text{ vertices of } J \text{ from } C$

Lemma: Let G=(V,E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Let $J\subseteq V$ have less than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|^2$ edges. Then the final container C(J) contains at least $\left(1-\frac{1}{\log(1/\epsilon)}\right)$ fraction of J.

Proof:

Claim: In every step of procedure where G[C] has more than ϵn^2 edges:

 $\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$

Lemma: Let G=(V,E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Let $J\subseteq V$ have less than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|^2$ edges. Then the final container C(J) contains at least $\left(1-\frac{1}{\log(1/\epsilon)}\right)$ fraction of J.

Proof:

Claim: In every step of procedure where G[C] has more than ϵn^2 edges:

$$\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$$

Let $\beta_1|J|,...,\beta_k|J|$ be the number of vertices of J removed from the container at each step.

Lemma: Let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Let $J \subseteq V$ have less than $\frac{\epsilon}{\log^2(1/\epsilon)} |J|^2$ edges.

Then the final container C(J) contains at least $\left(1-\frac{1}{\log(1/\epsilon)}\right)$ fraction of J.

Proof:

Claim: In every step of procedure where G[C] has more than ϵn^2 edges:

 $\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$

Let $\beta_1|J|,...,\beta_k|J|$ be the number of vertices of J removed from the container at each step.

Then, by the Claim above, at least $\log(1/\epsilon)$ $\beta_1 n, ..., \log(1/\epsilon)$ $\beta_k n$ vertices are removed from the container at each step.

Lemma: Let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Let $J \subseteq V$ have less than $\frac{\epsilon}{\log^2(1/\epsilon)} |J|^2$ edges.

Then the final container C(J) contains at least $\left(1-\frac{1}{\log(1/\epsilon)}\right)$ fraction of J.

Proof:

Claim: In every step of procedure where G[C] has more than ϵn^2 edges:

 $\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$

Let $\beta_1|J|,...,\beta_k|J|$ be the number of vertices of J removed from the container at each step.

Then, by the Claim above, at least $\log(1/\epsilon)$ $\beta_1 n, ..., \log(1/\epsilon)$ $\beta_k n$ vertices are removed from the container at each step.

Since the initial container is of size n, then $\sum_{i} \beta_{i} \leq \frac{1}{\log(1/\epsilon)}$, otherwise the final container would have less than 0 vertices.

Towards Proving Stronger Lemma

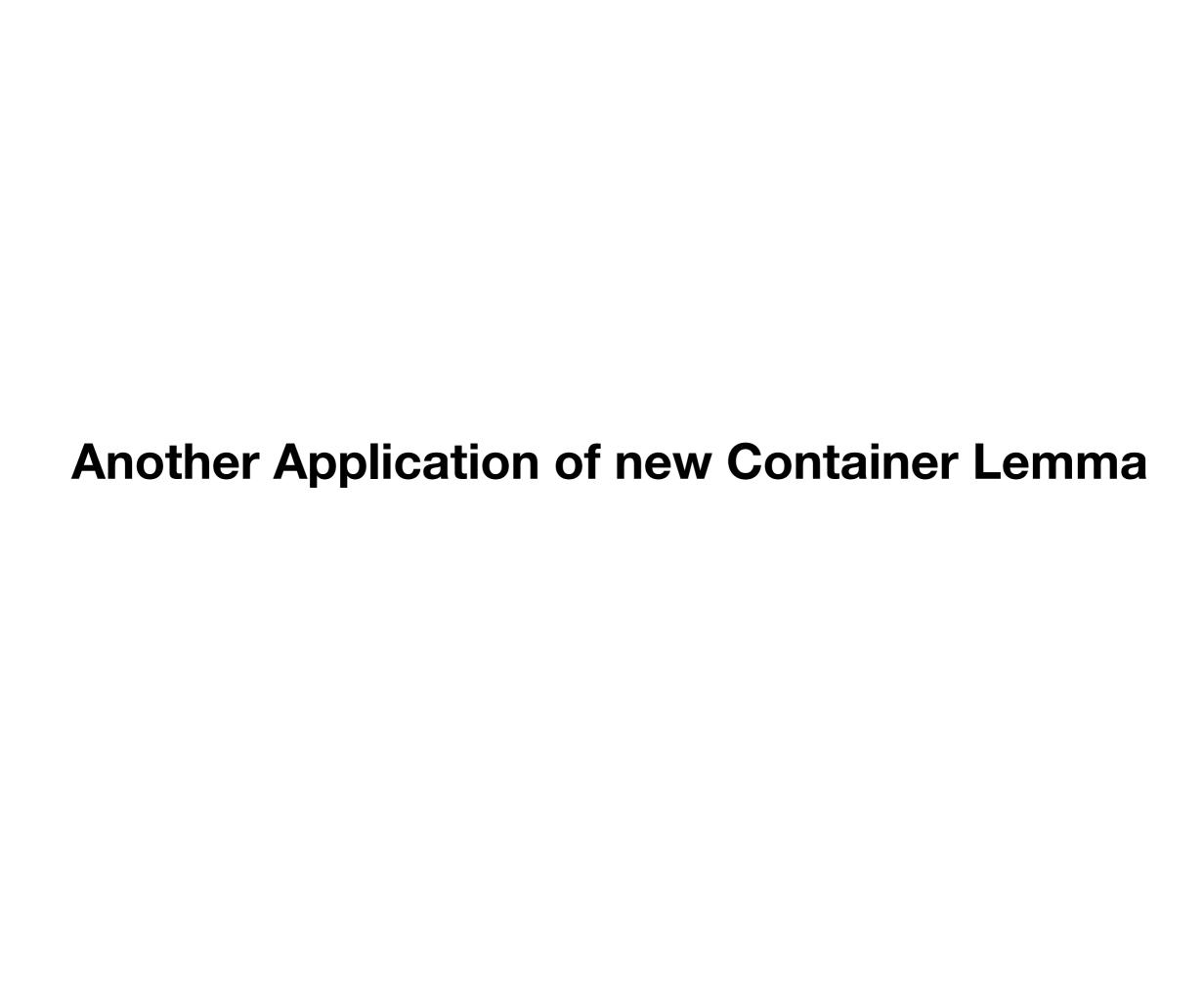
Stronger Lemma (Restated): For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq P(V)$ of containers that satisfies:

1.
$$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$
,

- 2. for every $C \in \mathcal{C}$, $|C| < \rho n$.
- 3. For every set $J\subseteq V$ such that G[J] has less than $\frac{\epsilon}{polylog(1/\epsilon)}|J|^2$ edges, there exists $C\in\mathscr{C}$ and α such that $|C|\leq (1-\alpha)\rho n$ and

$$|C \cap J| \ge \left(1 - \frac{\alpha}{2}\right)|J|.$$

- . Weak containment lemma shows that $|C\cap J| \geq \left(1-\frac{1}{\log(1/\epsilon)}\right)|J|$
- Full proof involves showing that when container is large (close to ρn) the container procedure makes faster progress OR we can shrink the container at the end of the process (full details in paper)



Theorem: Let G be a d-regular graph. Then the number of independent sets in G is at most $2^{\frac{n}{2}\left(1+\frac{1}{d}\right)}$, and there exists a d-regular graph achieving this maximum $(\frac{n}{2d}$ copies of $K_{d,d}$).

[Zhao '10] [Alon '91]

Theorem: Let G be a d—regular graph. Then the number of $\frac{n}{2}\left(1+\frac{1}{d}\right)$

independent sets in G is at most $2^{\frac{n}{2}\left(1+\frac{1}{d}\right)}$, and there exists a d-regular graph achieving this maximum ($\frac{n}{2d}$ copies of $K_{d,d}$).

[Zhao '10] [Alon '91]

Conjectured by Alon ('91), proven over series of improvements:

[Sapozhenko '01], [Kahn '01], [Galvin '09]

Theorem: Let G be a d—regular graph. Then the number of

independent sets in G is at most $2^{\frac{n}{2}\left(1+\frac{1}{d}\right)}$, and there exists a d-regular graph achieving this maximum ($\frac{n}{2d}$ copies of $K_{d,d}$).

[Zhao '10] [Alon '91]

Conjectured by Alon ('91), proven over series of improvements:

[Sapozhenko '01], [Kahn '01], [Galvin '09]

One of the classic applications of container method

Theorem: Let G be a d—regular graph. Then the number of independent sets in G is at most $2^{\frac{n}{2}\left(1+\frac{1}{d}\right)}$, and there exists a

d—regular graph achieving this maximum ($\frac{n}{2d}$ copies of $K_{d,d}$).

[Zhao '10] [Alon '91]

Conjectured by Alon ('91), proven over series of improvements:

[Sapozhenko '01], [Kahn '01], [Galvin '09]

One of the classic applications of container method

Question: What about sparse sets in a d-regular graph? Can we use the new container lemma in place of the standard container lemma used by Sapozhenko?

Counting Sparse Sets in Regular Graphs

Theorem: Let G be a d-regular graph. Let $k \ge \operatorname{polylog}(n)$. Then the number of induced subgraphs in G with edge density less $\frac{1}{k} \frac{d}{n}$ is at most

$$2^{\frac{n}{2}\left(1+O\left(\frac{\operatorname{polylog}(n)}{d}\right)+O\left(\frac{\operatorname{polylog}(n)}{k^{1/3}}\right)\right)}$$
. [This Work]

Counting Sparse Sets in Regular Graphs

Theorem: Let G be a d-regular graph. Let $k \ge \operatorname{polylog}(n)$. Then the number of induced subgraphs in G with edge density less $\frac{1}{k} \frac{d}{n}$ is at most

$$2^{\frac{n}{2}\left(1+O\left(\frac{\operatorname{polylog}(n)}{d}\right)+O\left(\frac{\operatorname{polylog}(n)}{k^{1/3}}\right)\right)}$$
. [This Work]

Remarks:

- Observe that the edge density of G is roughly $\frac{d}{n}$ and there are at least $\frac{1}{2}2^n$ induced subgraphs with edge density at least $\frac{4d}{n}$
- [Zhao '10] says that there are at most $2^{\frac{n}{2}\left(1+\frac{1}{d}\right)}$ induced subgraphs with edge density 0.
- Our theorem shows that even for edge density up to $\frac{1}{\operatorname{polylog}(n)} \frac{d}{n}$ there are still only roughly $2^{\frac{n}{2}}$ induced subgraphs.

Counting Sparse Sets in Regular Graphs

Theorem: Let G be a d-regular graph. Let $k \ge \operatorname{polylog}(n)$. Then the number of induced subgraphs in G with edge density less $\frac{1}{k} \frac{d}{n}$ is at most

$$2^{\frac{n}{2}\left(1+O\left(\frac{\operatorname{polylog}(n)}{d}\right)+O\left(\frac{\operatorname{polylog}(n)}{k^{1/3}}\right)\right)}$$
. [This Work]

Remarks:

- Observe that the edge density of G is roughly $\frac{d}{n}$ and there are at least $\frac{1}{2}2^n$ induced subgraphs with edge density at least $\frac{4d}{n}$
- [Zhao '10] says that there are at most $2^{\frac{n}{2}\left(1+\frac{1}{d}\right)}$ induced subgraphs with edge density 0.
- Our theorem shows that even for edge density up to $\frac{1}{\operatorname{polylog}(n)} \frac{d}{n}$ there are still only roughly $2^{\frac{n}{2}}$ induced subgraphs.
- $\frac{n}{2d}$ copies of $K_{d,d}$ gives lower bound of $2^{\frac{n}{2}\left(1+\frac{1}{d}+\frac{1}{k}\right)}$

Summary: We prove a new container lemma for sparse subgraphs, and use it to show that there is a $\left(\frac{\epsilon}{\text{polylog}(1/\epsilon)},\epsilon\right)$ — tolerant tester for the ρn independent set property with sample complexity $\tilde{O}(\rho^3/\epsilon^2)$.

Summary: We prove a new container lemma for sparse subgraphs, and use it to show that there is a $\left(\frac{\epsilon}{\text{polylog}(1/\epsilon)},\epsilon\right)$ — tolerant tester for the ρn independent set property with sample complexity $\tilde{O}(\rho^3/\epsilon^2)$.

Question 1: What about a fully tolerant tester? (i.e. an (ϵ_1, ϵ_2) —tolerant tester for any $\epsilon_1 < \epsilon_2$)

Summary: We prove a new container lemma for sparse subgraphs, and use it to show that there is a $\left(\frac{\epsilon}{\text{polylog}(1/\epsilon)},\epsilon\right)$ — tolerant tester for the ρn independent set property with sample complexity $\tilde{O}(\rho^3/\epsilon^2)$.

Question 1: What about a fully tolerant tester? (i.e. an (ϵ_1, ϵ_2) —tolerant tester for any $\epsilon_1 < \epsilon_2$)

Question 2: Can we use similar techniques to (tolerantly) test other graph properties? (k—colorability, ρ —cut, general partition properties)

Summary: We prove a new container lemma for sparse subgraphs, and use it to show that there is a $\left(\frac{\epsilon}{\text{polylog}(1/\epsilon)},\epsilon\right)$ — tolerant tester for the ρn independent set property with sample complexity $\tilde{O}(\rho^3/\epsilon^2)$.

Question 1: What about a fully tolerant tester? (i.e. an (ϵ_1, ϵ_2) —tolerant tester for any $\epsilon_1 < \epsilon_2$)

Question 2: Can we use similar techniques to (tolerantly) test other graph properties? (k—colorability, ρ —cut, general partition properties)

Question 3: Are there other applications of our new container lemma for sparse subgraphs?

• Counting sparse subgraphs in d—regular graphs \checkmark

Summary: We prove a new container lemma for sparse subgraphs, and use it to show that there is a $\left(\frac{\epsilon}{\text{polylog}(1/\epsilon)},\epsilon\right)$ — tolerant tester for the ρn independent set property with sample complexity $\tilde{O}(\rho^3/\epsilon^2)$.

Question 1: What about a fully tolerant tester? (i.e. an (ϵ_1, ϵ_2) —tolerant tester for any $\epsilon_1 < \epsilon_2$)

Question 2: Can we use similar techniques to (tolerantly) test other graph properties? (k—colorability, ρ —cut, general partition properties)

Question 3: Are there other applications of our new container lemma for sparse subgraphs?

• Counting sparse subgraphs in d—regular graphs \checkmark

Thank you!