A Tolerant Independent Set Tester Cameron Seth STOC 2025 ## **Independent Set Problem** Given a graph G on n vertices, does it have an independent set of size ρn ? ## **Independent Set Problem** Given a graph G on n vertices, does it have an independent set of size ρn ? ### **Testing Independent Sets** **Problem**: Distinguish between the cases: - (i) G has a ρn independent set, and - (ii) every induced subgraph of size ρn has at least ϵn^2 edges **Theorem**: Inspecting a random subgraph on $\tilde{O}(\rho/\epsilon^4)$ vertices is sufficient for distinguishing between (i) and (ii) (whp). [Goldreich, Goldwasser, Ron '98] #### **Definitions** An ϵ -tester for the ρn -independent set property is an algorithm that samples a set S of s random vertices, examines the induced subgraph G[S], and distinguishes between the cases (with high probability): - (i) G has a ρn independent set, and - (ii) every induced subgraph of size ρn has at least ϵn^2 edges (ϵ far) s is the sample complexity of the tester. ### **Testing Independent Sets** **Theorem:** There exists an ϵ —tester for the ρn independent set property with sample complexity $\tilde{O}(\rho/\epsilon^4)$. [Goldreich, Goldwasser, Ron '98] ### **Testing Independent Sets** **Theorem:** There exists an ϵ —tester for the ρn independent set property with sample complexity $\tilde{O}(\rho/\epsilon^4)$. [Goldreich, Goldwasser, Ron '98] **Theorem:** There exists an ϵ —tester for the ρn independent set property with sample complexity $\tilde{O}(\rho^3/\epsilon^2)$, [Blais, Seth '23] and any such tester has sample complexity $\Omega(\rho^3/\epsilon^2)$. [Feige, Langberg, Schechtman '04] ### **Weakness with Standard Testing** Standard Testing Problem: Distinguish between the cases: - (i) G has a ρn independent set, and - (ii) every induced subgraph of size ρn has at least ϵn^2 edges ### Weakness with Standard Testing Standard Testing Problem: Distinguish between the cases: - (i) G has a ρn independent set, and - (ii) every induced subgraph of size ρn has at least ϵn^2 edges **Question**: What if input graph is the following: start with the complete graph and plant a set $U \subset V$ with $|U| = \rho n$ such that G[U] has exactly one edge? ρn vertices with 1 edge ### Weakness with Standard Testing Standard Testing Problem: Distinguish between the cases: - (i) G has a ρn independent set, and - (ii) every induced subgraph of size ρn has at least ϵn^2 edges **Question**: What if input graph is the following: start with the complete graph and plant a set $U \subset V$ with $|U| = \rho n$ such that G[U] has exactly one edge? **Answer**: Testing algorithms have no guarantee on this type of input! Ideally we would like the algorithm to accept this type of graph. ρn vertices with 1 edge ### **Tolerant Testing Independent Sets** **Problem**: For $\epsilon_1 < \epsilon_2$, distinguish between the cases: - (i) G has an induced subgraph of size ρn with fewer than $\epsilon_1 n^2$ edges (ϵ_1 close) - (ii) Every induced subgraph of size ρn has at least $\epsilon_2 n^2$ edges (ϵ_2 far) An algorithm that, with high probability, distinguishes between (i) and (ii) is called an (ϵ_1, ϵ_2) —tester. [Parnas, Ron, Rubinfeld '06] ### **Tolerant Testing Independent Sets** **Problem**: For $\epsilon_1 < \epsilon_2$, distinguish between the cases: - (i) G has an induced subgraph of size ρn with fewer than $\epsilon_1 n^2$ edges (ϵ_1 -close) - (ii) Every induced subgraph of size ρn has at least $\epsilon_2 n^2$ edges (ϵ_2 far) An algorithm that, with high probability, distinguishes between (i) and (ii) is called an (ϵ_1, ϵ_2) —tester. ### **Tolerant Testing Independent Sets** **Problem**: For $\epsilon_1 < \epsilon_2$, distinguish between the cases: - (i) G has an induced subgraph of size ρn with fewer than $\epsilon_1 n^2$ edges (ϵ_1 -close) - (ii) Every induced subgraph of size ρn has at least $\epsilon_2 n^2$ edges (ϵ_2 far) An algorithm that, with high probability, distinguishes between (i) and (ii) is called an (ϵ_1, ϵ_2) —tester. #### **Remarks:** - Generalizes the standard testing problem ($\epsilon_1 = 0$) - In general ϵ_1 may be a function of ϵ_2 - In some other settings (bounded degree model, boolean strings), there is exponential gap between the query complexity of ϵ —testing and $(\tilde{\Theta}(\epsilon), \epsilon)$ —tolerant testing. [Fischer, Fortnow '05] [Goldreich, Wigderson '22] ### **Main Result** **Theorem:** There is a $\left(\frac{\epsilon}{\text{polylog}(1/\epsilon)},\epsilon\right)$ — tolerant tester for the ρn independent set property with sample complexity $\tilde{O}(\rho^3/\epsilon^2)$. [This Work] #### **Main Result** **Theorem:** There is a $\left(\frac{\epsilon}{\text{polylog}(1/\epsilon)}, \epsilon\right)$ — tolerant tester for the ρn independent set property with sample complexity $\tilde{O}(\rho^3/\epsilon^2)$. [This Work] #### **Remarks:** - Matches the (optimal) sample complexity bound for ϵ —testing - Generalizes container method approach of Blais, Seth '23 - Best prior result is from a general result for all graph partition properties, which gives sample complexity of roughly $(1/\epsilon)^{12}$ [Fiat, Ron '21] [Goldreich, Goldwasser, Ron '98] #### **Outline of Talk** - Main technique to prove theorem: graph container method - What is the container method? - How to use the container method to prove testing results [Blais, Seth '23] - A new graph container lemma for sparse subgraphs [This Work] - Proof ideas of new container lemma - Another application of new container lemma **Answer**: A tool for characterizing independent sets in some graphs. **Informal Idea**: For any graph satisfying some "nice" conditions, all independent sets in the graph can be covered by a small number of containers (each container is a subset of vertices). **Answer**: A tool for characterizing independent sets in some graphs. **Informal Idea**: For any graph satisfying some "nice" conditions, all independent sets in the graph can be covered by a small number of containers (each container is a subset of vertices). ### **An Initial Graph Container Lemma** **Lemma**: For any ϵ, ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies: 1. $$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$, - 2. for every $C \in \mathcal{C}$, $|C| \lesssim (1 \epsilon)\rho n$. - 3. for every independent set I, there exists $C \in \mathscr{C}$ with $I \subseteq C$. [Kleitman, Winston '82] ### **An Initial Graph Container Lemma** **Lemma**: For any ϵ, ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies: 1. $$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$, - 2. for every $C \in \mathcal{C}$, $|C| \lesssim (1 \epsilon)\rho n$. - 3. for every independent set I, there exists $C \in \mathscr{C}$ with $I \subseteq C$. [Kleitman, Winston '82] Note: for survey of combinatorial applications see "Counting Indepedent Sets in Graphs" by Samotij or "The method of hypergraph containers" by Balogh, Morris, and Samotij. **Testing Algorithm**: Take a random sample S of $s \sim \rho^3/\epsilon^2$ vertices, check if the induced subgraph G[S] has a ρs independent set. [Blais, Seth '23] **Testing Algorithm**: Take a random sample S of $s \sim \rho^3/\epsilon^2$ vertices, check if the induced subgraph G[S] has a ρs independent set. [Blais, Seth '23] **Testing Algorithm**: Take a random sample S of $s \sim \rho^3/\epsilon^2$ vertices, check if the induced subgraph G[S] has a ρs independent set. [Blais, Seth '23] **Testing Algorithm**: Take a random sample S of $s \sim \rho^3/\epsilon^2$ vertices, check if the induced subgraph G[S] has a ρs independent set. [Blais, Seth '23] **Key Challenge**: If G is ϵ -far from having a ρn independent set, show that S has a ρs independent set with only small probability. **Key Challenge**: If G is ε -far from having a ρn independent set, show that S has a ρs independent set with only small probability. **Key Challenge**: If G is ϵ -far from having a ρn independent set, show that S has a ρs independent set with only small probability. **Use Container Lemma*:** Every independent set is contained in a container! Each container is of size at most $|C| < (1 - \epsilon)\rho n$ and there are at most $\binom{n}{1/\epsilon}$ of them. ^{* [}Blais, Seth '23] proved a stronger container lemma compared to the lemma of [Kleitman, Winston '82] **Key Challenge**: If G is ϵ -far from having a ρn independent set, show that S has a ρs independent set with only small probability. **Use Container Lemma*:** Every independent set is contained in a container! Each container is of size at most $|C| < (1 - \epsilon)\rho n$ and there are at most $\binom{n}{1/\epsilon}$ of them. $Pr[S \text{ contains a } \rho_S \text{ independent set}]$ ^{* [}Blais, Seth '23] proved a stronger container lemma compared to the lemma of [Kleitman, Winston '82] **Key Challenge**: If G is ϵ -far from having a ρn independent set, show that S has a ρs independent set with only small probability. **Use Container Lemma*:** Every independent set is contained in a container! Each container is of size at most $|C| < (1 - \epsilon)\rho n$ and there are at most $\binom{n}{1/\epsilon}$ of them. $Pr[S \text{ contains a } \rho s \text{ independent set}]$ $\leq \sum_{C \in \mathscr{C}} \Pr[S \text{ contains at least } \rho s \text{ vertices from } C]$ ^{* [}Blais, Seth '23] proved a stronger container lemma compared to the lemma of [Kleitman, Winston '82] **Key Challenge**: If G is ϵ -far from having a ρn independent set, show that S has a ρs independent set with only small probability. **Use Container Lemma*:** Every independent set is contained in a container! Each container is of size at most $|C| < (1 - \epsilon)\rho n$ and there are at most $\binom{n}{1/\epsilon}$ of them. $Pr[S \text{ contains a } \rho s \text{ independent set}]$ $\leq \sum_{C \in \mathscr{C}} \Pr[S \text{ contains at least } \rho s \text{ vertices from } C]$ $$\lesssim \binom{n}{1/\epsilon} e^{-\epsilon^2 s}$$ ^{* [}Blais, Seth '23] proved a stronger container lemma compared to the lemma of [Kleitman, Winston '82] **Key Challenge**: If G is ϵ -far from having a ρn independent set, show that S has a ρs independent set with only small probability. **Use Container Lemma*:** Every independent set is contained in a container! Each container is of size at most $|C| < (1 - \epsilon)\rho n$ and there are at most $\binom{n}{1/\epsilon}$ of them. $Pr[S \text{ contains a } \rho s \text{ independent set}]$ $\leq \sum_{C \in \mathscr{C}} \Pr[S \text{ contains at least } \rho s \text{ vertices from } C]$ $$\lesssim {n \choose 1/\epsilon} e^{-\epsilon^2 s} \leq 1/3$$, as long as $s \gtrsim \frac{\log n}{\epsilon^3}$. ^{* [}Blais, Seth '23] proved a stronger container lemma compared to the lemma of [Kleitman, Winston '82] ### **Towards a Tolerant Tester** **Testing Algorithm**: Take a random sample S of $s \sim \rho^3/\epsilon^2$ vertices, check if the induced subgraph G[S] has an induced subgraph of size ρs with fewer than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)} s^2$ edges. **Testing Algorithm**: Take a random sample S of $s \sim \rho^3/\epsilon^2$ vertices, check if the induced subgraph G[S] has an induced subgraph of size ρs with fewer than $\frac{\epsilon}{\text{polylog}(1/\epsilon)} s^2$ edges. **Testing Algorithm**: Take a random sample S of $s \sim \rho^3/\epsilon^2$ vertices, check if the induced subgraph G[S] has an induced subgraph of size ρs with fewer than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)} s^2$ edges. **Testing Algorithm**: Take a random sample S of $s \sim \rho^3/\epsilon^2$ vertices, check if the induced subgraph G[S] has an induced subgraph of size ρs with fewer than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)} s^2$ edges. **Key Challenge**: If G is ε -far from having a ρn independent set, show that S has a ρs sparse set with only small probability. **Testing Algorithm**: Take a random sample S of $s \sim \rho^3/\epsilon^2$ vertices, check if the induced subgraph G[S] has an induced subgraph of size ρs with fewer than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)} s^2$ edges. **Key Challenge**: If G is ϵ -far from having a ρn independent set, show that S has a ρs sparse set with only small probability. Induced subgraph has fewer than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)} s^2$ edges **Desired Lemma?**: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies: 1. $$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$, - 2. for every $C \in \mathcal{C}$, $|C| < \rho n$. - 3. For every set $J\subseteq V$ such that G[J] has fewer than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)}|J|^2$ edges, there exists $C\in\mathscr{C}$ with $J\subseteq C$. **Desired Lemma?**: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies: 1. $$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$, - 2. for every $C \in \mathcal{C}$, $|C| < \rho n$. - 3. For every set $J\subseteq V$ such that G[J] has fewer than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)}|J|^2$ edges, there exists $C\in\mathscr{C}$ with $J\subseteq C$. This is not possible (more details in a few slides) **Desired Lemma?**: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies: 1. $$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$, - 2. for every $C \in \mathcal{C}$, $|C| < \rho n$. - 3. For every set $J\subseteq V$ such that G[J] has fewer than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)}|J|^2$ edges, there exists $C\in\mathscr{C}$ with $J\subseteq C$. No prior results of this form. Only similar results on "sparse subgraphs" apply to subgraphs with smaller density or bounded max degree. This is not possible (more details in a few slides) [Nenadov '24] [Saxton, Thomason '15] **Lemma***: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies: 1. $$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$, - 2. for every $C \in \mathcal{C}$, $|C| < \rho n$. - 3. For every set $J\subseteq V$ such that G[J] has fewer than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)}\left|J\right|^2$ edges, there exists $C\in\mathscr{C}$ and α such that $\left|C\right|\leq (1-\alpha)\rho n$ and $$|C \cap J| \ge \left(1 - \frac{\alpha}{2}\right)|J|.$$ ^{*} Omitting some details **Lemma***: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies: 1. $$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$, - 2. for every $C \in \mathcal{C}$, $|C| < \rho n$. - 3. For every set $J\subseteq V$ such that G[J] has fewer than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)}\left|J\right|^2$ edges, there exists $C\in\mathscr{C}$ and α such that $|C|\leq (1-\alpha)\rho n$ and $$|C \cap J| \ge \left(1 - \frac{\alpha}{2}\right)|J|.$$ Informally: each sparse set is "mostly" contained in a container **Lemma***: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies: 1. $$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$, - 2. for every $C \in \mathcal{C}$, $|C| < \rho n$. - Using this new container lemma instead of standard container lemma used by Blais, Seth ('23) we can the prove theorem. - 3. For every set $J\subseteq V$ such that G[J] has fewer than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)}\left|J\right|^2$ edges, there exists $C\in\mathscr{C}$ and α such that $|C|\leq (1-\alpha)\rho n$ and $$|C \cap J| \ge \left(1 - \frac{\alpha}{2}\right)|J|.$$ Informally: each sparse set is "mostly" contained in a container ^{*} Omitting some details Warmup: How to prove Container Lemma for Independent Sets - An Encoding Argument How can I give you the most information about an independent set I by just telling you about one of the vertices in I? How can I give you the most information about an independent set I by just telling you about one of the vertices in I? How can I give you the most information about an independent set I by just telling you about one of the vertices in I? How can I give you the most information about an independent set I by just telling you about one of the vertices in I? How can I give you the most information about an independent set I by just telling you about one of the vertices in I? How can I give you the most information about an independent set I by just telling you about one of the vertices in I? **Input**: Graph G and an independent set I - Initialize fingerprint $F = \emptyset$ and container C = V - Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C. **Input**: Graph G and an independent set I - Initialize fingerprint $F = \emptyset$ and container C = V - Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C. **Input**: Graph G and an independent set I - Initialize fingerprint $F = \emptyset$ and container C = V - Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C. 1st Iteration **Input**: Graph G and an independent set I - Initialize fingerprint $F = \emptyset$ and container C = V - Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C. 1st Iteration **Input**: Graph G and an independent set I - Initialize fingerprint $F = \emptyset$ and container C = V - Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C. 2nd Iteration **Input**: Graph G and an independent set I - Initialize fingerprint $F = \emptyset$ and container C = V - Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C. Final Iteration **Input**: Graph G and an independent set I - Initialize fingerprint $F = \emptyset$ and container C = V - Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C. Final Iteration **Input**: Graph G and an independent set I - Initialize fingerprint $F = \emptyset$ and container C = V - Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C. Final Iteration #### **Key Observations:** - $I \subseteq C(I)$ - C(I) = C(F(I)) **Lemma**: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies: 1. $$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$, 2. for every $C \in \mathcal{C}$, $|C| < \rho n$. - [Kleitman, Winston '82] - 3. for every independent set I, there exists $C \in \mathscr{C}$ with $I \subseteq C$. **Lemma**: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies: 1. $$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$, 2. for every $C \in \mathcal{C}$, $|C| < \rho n$. - [Kleitman, Winston '82] - 3. for every independent set I, there exists $C \in \mathcal{C}$ with $I \subseteq C$. Question: how do we construct the collection of containers? **Lemma**: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies: 1. $$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$, 2. for every $C \in \mathcal{C}$, $|C| < \rho n$. [Kleitman, Winston '82] 3. for every independent set I, there exists $C \in \mathcal{C}$ with $I \subseteq C$. Question: how do we construct the collection of containers? **Answer:** **Lemma**: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies: 1. $$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$, 2. for every $C \in \mathcal{C}$, $|C| < \rho n$. - [Kleitman, Winston '82] - 3. for every independent set I, there exists $C \in \mathcal{C}$ with $I \subseteq C$. Question: how do we construct the collection of containers? Answer: Let $\mathscr{C} = \{C(I) : I \text{ is an independent set in } G\}$ **Lemma**: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies: 1. $$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$, 2. for every $C \in \mathcal{C}$, $|C| < \rho n$. - [Kleitman, Winston '82] - 3. for every independent set I, there exists $C \in \mathcal{C}$ with $I \subseteq C$. Question: how do we construct the collection of containers? Answer: Let $$\mathscr{C} = \{C(I) : I \text{ is an independent set in } G\}$$ = $\{C(F(I)) : I \text{ is an independent set in } G\}$ **Lemma**: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies: 1. $$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$, 2. for every $C \in \mathcal{C}$, $|C| < \rho n$. [Kleitman, Winston '82] 3. for every independent set I, there exists $C \in \mathcal{C}$ with $I \subseteq C$. Question: how do we construct the collection of containers? #### **Answer:** Let $$\mathscr{C} = \{C(I) : I \text{ is an independent set in } G\}$$ = $\{C(F(I)) : I \text{ is an independent set in } G\}$ = $\{C(F) : F = F(I) \text{ for some independent set } I \text{ in } G\}$ # How to prove new Container Lemma for Sparse Sets - An Encoding Argument ### A Container Lemma For Sparse Sets (restated) **Lemma***: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq 2^V$ of containers that satisfies: 1. $$|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$$, - 2. for every $C \in \mathcal{C}$, $|C| < \rho n$. - 3. For every set $J\subseteq V$ such that G[J] has fewer than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)}\left|J\right|^2$ edges, there exists $C\in\mathscr{C}$ and α such that $\left|C\right|\leq (1-\alpha)\rho n$ and $$|C \cap J| \ge \left(1 - \frac{\alpha}{2}\right)|J|.$$ Informally: each sparse set is "mostly" contained in a container How can I give you the most information about a sparse set J by just telling you about one (or two) of the vertices in J? How can I give you the most information about a sparse set J by just telling you about one (or two) of the vertices in J? **Answer**: Send on and remove higher degree vertices How can I give you the most information about a sparse set J by just telling you about one (or two) of the vertices in J? **Answer**: Send on and remove higher degree vertices How can I give you the most information about a sparse set J by just telling you about one (or two) of the vertices in J? **Answer**: Send on and remove higher degree vertices Send on and remove neighbours How can I give you the most information about a sparse set J by just telling you about one (or two) of the vertices in J? **Answer**: Send on and remove higher degree vertices Send O and remove neighbours **Input**: Graph G and a sparse set J - Initialize fingerprint $F=\varnothing$ and container C=V - Repeat while G[C] has more than ϵn^2 edges - select a vertex $v \in J$ and an operation of "remove neighbours" or "remove higher degree vertices" that maximizes the following: # vertices removed from C by operation # vertices in J removed from C by operation • apply operation to container, add \boldsymbol{v} and operation to \boldsymbol{F} **Input**: Graph G and a sparse set J - Initialize fingerprint $F = \emptyset$ and container C = V - Repeat while G[C] has more than ϵn^2 edges - select a vertex $v \in J$ and an operation of "remove neighbours" or "remove higher degree vertices" that maximizes the following: # vertices removed from C by operation # vertices in J removed from C by operation • apply operation to container, add \boldsymbol{v} and operation to \boldsymbol{F} **Input**: Graph G and a sparse set J - Initialize fingerprint $F=\emptyset$ and container C=V - Repeat while G[C] has more than ϵn^2 edges - select a vertex $v \in J$ and an operation of "remove neighbours" or "remove higher degree vertices" that maximizes the following: # vertices removed from C by operation # vertices in J removed from C by operation • apply operation to container, add \boldsymbol{v} and operation to \boldsymbol{F} **Input**: Graph G and a sparse set J - Initialize fingerprint $F = \emptyset$ and container C = V - Repeat while G[C] has more than ϵn^2 edges - select a vertex $v \in J$ and an operation of "remove neighbours" or "remove higher degree vertices" that maximizes the following: # vertices removed from C by operation # vertices in J removed from C by operation apply operation to container, add v and operation to F #### **Observations:** - C(J) can be reconstructed from F(J) - J is NOT fully contained in C(J) ### Intuition: Procedure makes Progress **Claim**: In every step of procedure where G[C] has more than ϵn^2 edges: ``` \frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|} ``` ### Intuition: Procedure makes Progress **Claim**: In every step of procedure where G[C] has more than ϵn^2 edges: $$\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$$ Informally: in every step the procedure removes "much" more from the current container C than from J (relatively). ### **Intuition: Procedure makes Progress** **Claim**: In every step of procedure where G[C] has more than ϵn^2 edges: $$\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$$ Informally: in every step the procedure removes "much" more from the current container ${\cal C}$ than from ${\cal J}$ (relatively). For example, if $\frac{n}{2}$ vertices are removed from C then only $\frac{|J|}{2\log(1/\epsilon)}$ vertices of J are removed from C. **Claim**: In every step of procedure where G[C] has more than ϵn^2 edges: $\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$ **Example 1**: Suppose G[C] is the random graph on n vertices with edge density ϵ , and plant the sparse set J (has fewer than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|^2$ edges). **Claim**: In every step of procedure where G[C] has more than ϵn^2 edges: $\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$ **Example 1**: Suppose G[C] is the random graph on n vertices with edge density ϵ , and plant the sparse set J (has fewer than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|^2$ edges). **Claim**: In every step of procedure where G[C] has more than ϵn^2 edges: $\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$ **Example 1**: Suppose G[C] is the random graph on n vertices with edge density ϵ , and plant the sparse set J (has fewer than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|^2$ edges). • Pick a vertex $v \in J$ with degree less than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|$ in G[J]. **Claim**: In every step of procedure where G[C] has more than ϵn^2 edges: $\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$ **Example 1**: Suppose G[C] is the random graph on n vertices with edge density ϵ , and plant the sparse set J (has fewer than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|^2$ edges). • Pick a vertex $v \in J$ with degree less than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|$ in G[J]. Such a vertex exists because this is the average degree in G[J] **Claim**: In every step of procedure where G[C] has more than ϵn^2 edges: $\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$ **Example 1**: Suppose G[C] is the random graph on n vertices with edge density ϵ , and plant the sparse set J (has fewer than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|^2$ edges). • Pick a vertex $v \in J$ with degree less than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|$ in G[J]. Such a vertex exists because this is the average degree in G[J] • Using "remove neighbours" operation, can remove ϵn vertices from C and less than $\frac{\epsilon}{\log^2(1/\epsilon)}|J|$ vertices of J from C. **Claim**: In every step of procedure where G[C] has more than ϵn^2 edges: $$\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$$ **Example 2**: Suppose G[C] has ϵn vertices with degree n. ϵn vertices adjacent to everything **Claim**: In every step of procedure where G[C] has more than ϵn^2 edges: $$\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$$ **Example 2**: Suppose G[C] has en vertices with degree n. ϵn vertices adjacent to everything • If there is a vertex $v \in J$ with degree less than $\frac{1}{\log(1/\epsilon)}|J|$ in G[J] and degree n in G[C] then select v and "remove neighbours" operation **Claim**: In every step of procedure where G[C] has more than ϵn^2 edges: $$\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$$ **Example 2**: Suppose G[C] has en vertices with degree n. ϵn vertices adjacent to everything - If there is a vertex $v \in J$ with degree less than $\frac{1}{\log(1/\epsilon)}|J|$ in G[J] and degree n in G[C] then select v and "remove neighbours" operation - Otherwise, select $v \in J$ with degree less than n in G[C] and "remove higher degree vertices" operation, will remove ϵn vertices from C and less than $\frac{\epsilon}{\log(1/\epsilon)}|J|$ vertices of J from C **Claim**: In every step of procedure where G[C] has more than ϵn^2 edges: $\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$ Proof: Use the following lemma to generalize 2 cases. **Lemma**: If G[C] has more than ϵn^2 edges, then there exists $U \subseteq V$ such that every vertex in U has degree at least (roughly) $\frac{\epsilon n^2}{|U|}$ in G[C]. **Claim**: In every step of procedure where G[C] has more than ϵn^2 edges: $\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$ Proof: Use the following lemma to generalize 2 cases. **Lemma**: If G[C] has more than ϵn^2 edges, then there exists $U \subseteq V$ such that every vertex in U has degree at least (roughly) $\frac{\epsilon n^2}{|U|}$ in G[C]. **Claim**: In every step of procedure where G[C] has more than ϵn^2 edges: $$\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$$ Proof: Use the following lemma to generalize 2 cases. **Lemma**: If G[C] has more than ϵn^2 edges, then there exists $U \subseteq V$ such that every vertex in U has degree at least (roughly) $\frac{\epsilon n^2}{|U|}$ in G[C]. • If there is a vertex $v\in J$ with degree less than $\frac{\epsilon n}{\log(1/\epsilon)|U|}|J|$ in G[J] and degree at least $\frac{\epsilon n^2}{|U|}$ in G[C] then can select v and "remove neighbours" operation **Claim**: In every step of procedure where G[C] has more than ϵn^2 edges: $$\frac{\text{\# vertices removed from } C \text{ by operation}}{\text{\# vertices in } J \text{ removed from } C \text{ by operation}} \gtrsim \log(1/\epsilon) \cdot \frac{n}{|J|}$$ Proof: Use the following lemma to generalize 2 cases. **Lemma**: If G[C] has more than ϵn^2 edges, then there exists $U \subseteq V$ such that every vertex in U has degree at least (roughly) $\frac{\epsilon n^2}{|U|}$ in G[C]. - If there is a vertex $v \in J$ with degree less than $\frac{\epsilon n}{\log(1/\epsilon)|U|}|J|$ in G[J] and degree at least $\frac{\epsilon n^2}{|U|}$ in G[C] then can select v and "remove neighbours" operation - Otherwise, select $v \in J$ with degree less than $\frac{\epsilon n^2}{|U|}$ in G[C] and "remove higher degree vertices" operation, will remove |U| vertices from C and less than $\frac{|U|}{\log(1/\epsilon)n}|J| \text{ vertices of } J \text{ from } C$ ### **Towards Proving Stronger Lemma** **Lemma (Restated)**: For any ϵ , ρ let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a set $\mathscr{C} \subseteq P(V)$ of containers that satisfies: - 1. $|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$, - 2. for every $C \in \mathcal{C}$, $|C| < \rho n$. - 3. For every set $J\subseteq V$ such that G[J] has fewer than $\frac{\epsilon}{\operatorname{polylog}(1/\epsilon)}|J|^2$ edges, there exists $C\in\mathscr{C}$ and α such that $|C|\leq (1-\alpha)\rho n$ and $$|C \cap J| \ge \left(1 - \frac{\alpha}{2}\right)|J|.$$ • Full proof involves showing that when container is large (close to ρn) the container procedure makes faster progress OR we can shrink the container at the end of the process (full details in paper) **Theorem**: Let G be a d-regular graph. Then the number of independent sets in G is at most $2^{\frac{n}{2}\left(1+\frac{1}{d}\right)}$, and there exists a d-regular graph achieving this maximum $(\frac{n}{2d}$ copies of $K_{d,d}$). [Zhao '10] [Alon '91] **Theorem**: Let G be a d—regular graph. Then the number of $\frac{n}{2}\left(1+\frac{1}{d}\right)$ independent sets in G is at most $2^{\frac{n}{2}\left(1+\frac{1}{d}\right)}$, and there exists a d-regular graph achieving this maximum ($\frac{n}{2d}$ copies of $K_{d,d}$). [Zhao '10] [Alon '91] Conjectured by Alon ('91), proven over series of improvements: [Sapozhenko '01], [Kahn '01], [Galvin '09] **Theorem**: Let G be a d—regular graph. Then the number of independent sets in G is at most $2^{\frac{n}{2}\left(1+\frac{1}{d}\right)}$, and there exists a d-regular graph achieving this maximum ($\frac{n}{2d}$ copies of $K_{d,d}$). [Zhao '10] [Alon '91] Conjectured by Alon ('91), proven over series of improvements: [Sapozhenko '01], [Kahn '01], [Galvin '09] One of the classic applications of container method **Theorem**: Let G be a d—regular graph. Then the number of independent sets in G is at most $2^{\frac{n}{2}\left(1+\frac{1}{d}\right)}$, and there exists a d—regular graph achieving this maximum ($\frac{n}{2d}$ copies of $K_{d,d}$). [Zhao '10] [Alon '91] Conjectured by Alon ('91), proven over series of improvements: [Sapozhenko '01], [Kahn '01], [Galvin '09] One of the classic applications of container method **Question**: What about sparse sets in a d-regular graph? Can we use the new container lemma in place of the standard container lemma used by Sapozhenko? ### **Counting Sparse Sets in Regular Graphs** **Theorem**: Let G be a d-regular graph. Let $k \ge \operatorname{polylog}(n)$. Then the number of induced subgraphs in G with edge density less $\frac{1}{k} \frac{d}{n}$ is at most $$2^{\frac{n}{2}\left(1+O\left(\frac{\operatorname{polylog}(n)}{d}\right)+O\left(\frac{\operatorname{polylog}(n)}{k^{1/3}}\right)\right)}$$. [This Work] ### **Counting Sparse Sets in Regular Graphs** **Theorem**: Let G be a d-regular graph. Let $k \ge \operatorname{polylog}(n)$. Then the number of induced subgraphs in G with edge density less $\frac{1}{k} \frac{d}{n}$ is at most $$2^{\frac{n}{2}\left(1+O\left(\frac{\operatorname{polylog}(n)}{d}\right)+O\left(\frac{\operatorname{polylog}(n)}{k^{1/3}}\right)\right)}$$. [This Work] #### **Remarks:** - Observe that the edge density of G is roughly $\frac{d}{n}$ and there are at least $\frac{1}{2}2^n$ induced subgraphs with edge density at least $\frac{4d}{n}$ - [Zhao '10] says that there are at most $2^{\frac{n}{2}\left(1+\frac{1}{d}\right)}$ induced subgraphs with edge density 0. - Our theorem shows that even for edge density up to $\frac{1}{\operatorname{polylog}(n)} \frac{d}{n}$ there are still only roughly $2^{\frac{n}{2}}$ induced subgraphs. ### **Counting Sparse Sets in Regular Graphs** **Theorem**: Let G be a d-regular graph. Let $k \ge \operatorname{polylog}(n)$. Then the number of induced subgraphs in G with edge density less $\frac{1}{k} \frac{d}{n}$ is at most $$2^{\frac{n}{2}\left(1+O\left(\frac{\operatorname{polylog}(n)}{d}\right)+O\left(\frac{\operatorname{polylog}(n)}{k^{1/3}}\right)\right)}$$. [This Work] #### **Remarks**: - Observe that the edge density of G is roughly $\frac{d}{n}$ and there are at least $\frac{1}{2}2^n$ induced subgraphs with edge density at least $\frac{4d}{n}$ - [Zhao '10] says that there are at most $2^{\frac{n}{2}\left(1+\frac{1}{d}\right)}$ induced subgraphs with edge density 0. - Our theorem shows that even for edge density up to $\frac{1}{\operatorname{polylog}(n)} \frac{d}{n}$ there are still only roughly $2^{\frac{n}{2}}$ induced subgraphs. - $\frac{n}{2d}$ copies of $K_{d,d}$ gives lower bound of $2^{\frac{n}{2}\left(1+\frac{1}{d}+\frac{1}{k}\right)}$ ### **Summary and Open Questions** **Summary:** We prove a new container lemma for sparse subgraphs, and use it to show that there is a $\left(\frac{\epsilon}{\text{polylog}(1/\epsilon)},\epsilon\right)$ — tolerant tester for the ρn independent set property with sample complexity $\tilde{O}(\rho^3/\epsilon^2)$. **Summary:** We prove a new container lemma for sparse subgraphs, and use it to show that there is a $\left(\frac{\epsilon}{\text{polylog}(1/\epsilon)},\epsilon\right)$ — tolerant tester for the ρn independent set property with sample complexity $\tilde{O}(\rho^3/\epsilon^2)$. **Question 1:** What about a fully tolerant tester? (i.e. an (ϵ_1, ϵ_2) —tolerant tester for any $\epsilon_1 < \epsilon_2$) **Summary:** We prove a new container lemma for sparse subgraphs, and use it to show that there is a $\left(\frac{\epsilon}{\text{polylog}(1/\epsilon)},\epsilon\right)$ — tolerant tester for the ρn independent set property with sample complexity $\tilde{O}(\rho^3/\epsilon^2)$. **Question 1:** What about a fully tolerant tester? (i.e. an (ϵ_1, ϵ_2) tolerant tester for any $\epsilon_1 < \epsilon_2$) **Question 2:** Can we use similar techniques to (tolerantly) test other graph properties? (k—colorability, ρ —cut, general partition properties) **Summary:** We prove a new container lemma for sparse subgraphs, and use it to show that there is a $\left(\frac{\epsilon}{\text{polylog}(1/\epsilon)},\epsilon\right)$ — tolerant tester for the ρn independent set property with sample complexity $\tilde{O}(\rho^3/\epsilon^2)$. **Question 1:** What about a fully tolerant tester? (i.e. an (ϵ_1, ϵ_2) —tolerant tester for any $\epsilon_1 < \epsilon_2$) **Question 2:** Can we use similar techniques to (tolerantly) test other graph properties? (k—colorability, ρ —cut, general partition properties) **Question 3:** Are there other applications of our new container lemma for sparse subgraphs? • Counting sparse subgraphs in d—regular graphs \checkmark **Summary:** We prove a new container lemma for sparse subgraphs, and use it to show that there is a $\left(\frac{\epsilon}{\text{polylog}(1/\epsilon)},\epsilon\right)$ — tolerant tester for the ρn independent set property with sample complexity $\tilde{O}(\rho^3/\epsilon^2)$. **Question 1:** What about a fully tolerant tester? (i.e. an (ϵ_1, ϵ_2) —tolerant tester for any $\epsilon_1 < \epsilon_2$) **Question 2:** Can we use similar techniques to (tolerantly) test other graph properties? (k—colorability, ρ —cut, general partition properties) **Question 3:** Are there other applications of our new container lemma for sparse subgraphs? • Counting sparse subgraphs in d—regular graphs \checkmark # Thank you!