
Cameron Seth

A Tolerant Independent Set Tester

STOC 2025

Given a graph G on vertices, does it have an independent set of
size ?

n
ρn

Independent Set Problem

Given a graph G on vertices, does it have an independent set of
size ?

n
ρn

Independent Set Problem

Problem: Distinguish between the cases:

(i) has a independent set, and

(ii) every induced subgraph of size has at least edges

G ρn
ρn ϵn2

Testing Independent Sets

vs.

Theorem: Inspecting a random subgraph on vertices is
sufficient for distinguishing between (i) and (ii) (whp).

Õ(ρ/ϵ4)

[Goldreich, Goldwasser, Ron ’98]

An -tester for the -independent set property is an algorithm that
samples a set of random vertices, examines the induced subgraph

, and distinguishes between the cases (with high probability):

ϵ ρn
S s

G[S]

Definitions

(i) has a independent set, and

(ii) every induced subgraph of size has at least edges (—far)

G ρn
ρn ϵn2 ϵ

 is the sample complexity of the tester.s

Theorem: There exists an —tester for the independent set
property with sample complexity .

ϵ ρn
Õ(ρ/ϵ4)

Testing Independent Sets

[Goldreich, Goldwasser, Ron ’98]

Theorem: There exists an —tester for the independent set
property with sample complexity .

ϵ ρn
Õ(ρ/ϵ4)

Testing Independent Sets

[Goldreich, Goldwasser, Ron ’98]

Theorem: There exists an —tester for the independent set
property with sample complexity ,

and any such tester has sample complexity .

ϵ ρn
Õ(ρ3/ϵ2)

Ω(ρ3/ϵ2)

[Blais, Seth ’23]

[Feige, Langberg, Schechtman ’04]

Weakness with Standard Testing
Standard Testing Problem: Distinguish between the cases:

(i) has a independent set, and

(ii) every induced subgraph of size has at least edges

G ρn
ρn ϵn2

Weakness with Standard Testing
Standard Testing Problem: Distinguish between the cases:

(i) has a independent set, and

(ii) every induced subgraph of size has at least edges

G ρn
ρn ϵn2

Question: What if input graph is the following: start with the
complete graph and plant a set with such that

 has exactly one edge?
U ⊂ V |U | = ρn

G[U]

 vertices with 1 edgeρn

Weakness with Standard Testing
Standard Testing Problem: Distinguish between the cases:

(i) has a independent set, and

(ii) every induced subgraph of size has at least edges

G ρn
ρn ϵn2

Question: What if input graph is the following: start with the
complete graph and plant a set with such that

 has exactly one edge?
U ⊂ V |U | = ρn

G[U]

 vertices with 1 edgeρn

Answer: Testing algorithms have no
guarantee on this type of input!

Ideally we would like the algorithm to
accept this type of graph.

Tolerant Testing Independent Sets

vs.

An algorithm that, with high probability, distinguishes between
(i) and (ii) is called an —tester.(ϵ1, ϵ2)

 vertices with at most edgesρn ϵ1n2 at least edgesϵ2n2

[Parnas, Ron, Rubinfeld ’06]

Problem: For , distinguish between the cases:

(i) has an induced subgraph of size with fewer than edges (—close)

(ii) Every induced subgraph of size has at least edges (—far)

ϵ1 < ϵ2

G ρn ϵ1n2 ϵ1

ρn ϵ2n2 ϵ2

Tolerant Testing Independent Sets
Problem: For , distinguish between the cases:

(i) has an induced subgraph of size with fewer than edges (—close)

(ii) Every induced subgraph of size has at least edges (—far)

ϵ1 < ϵ2

G ρn ϵ1n2 ϵ1

ρn ϵ2n2 ϵ2

An algorithm that, with high probability, distinguishes between (i) and (ii)
is called an —tester.(ϵ1, ϵ2)

Tolerant Testing Independent Sets

Remarks:
• Generalizes the standard testing problem ()

• In general may be a function of

• In some other settings (bounded degree model, boolean strings),

there is exponential gap between the query complexity of
—testing and —tolerant testing.

ϵ1 = 0
ϵ1 ϵ2

ϵ (Θ̃(ϵ), ϵ)
[Fischer, Fortnow ’05]

[Goldreich, Wigderson ’22]

Problem: For , distinguish between the cases:

(i) has an induced subgraph of size with fewer than edges (—close)

(ii) Every induced subgraph of size has at least edges (—far)

ϵ1 < ϵ2

G ρn ϵ1n2 ϵ1

ρn ϵ2n2 ϵ2

An algorithm that, with high probability, distinguishes between (i) and (ii)
is called an —tester.(ϵ1, ϵ2)

Theorem: There is a — tolerant tester for the

independent set property with sample complexity .
(ϵ

polylog(1/ϵ) , ϵ) ρn
Õ(ρ3/ϵ2)

Main Result

[This Work]

Theorem: There is a — tolerant tester for the

independent set property with sample complexity .
(ϵ

polylog(1/ϵ) , ϵ) ρn
Õ(ρ3/ϵ2)

Main Result

Remarks:

• Matches the (optimal) sample complexity bound for —testing

• Generalizes container method approach of Blais, Seth ’23

• Best prior result is from a general result for all graph partition

properties, which gives sample complexity of roughly

ϵ

(1/ϵ)12

[Fiat, Ron ’21]
[Goldreich, Goldwasser, Ron ’98]

[This Work]

• Main technique to prove theorem: graph container method

• What is the container method?

• How to use the container method to prove testing results  

• A new graph container lemma for sparse subgraphs

• Proof ideas of new container lemma

• Another application of new container lemma

Outline of Talk

[Blais, Seth ’23]

[This Work]

What is the Container Method?
Answer: A tool for characterizing independent sets in some graphs.

What is the Container Method?
Answer: A tool for characterizing independent sets in some graphs.

What is the Container Method?
Answer: A tool for characterizing independent sets in some graphs.

What is the Container Method?
Answer: A tool for characterizing independent sets in some graphs.

What is the Container Method?
Answer: A tool for characterizing independent sets in some graphs.

Informal Idea: For any graph satisfying some “nice” conditions, all
independent sets in the graph can be covered by a small number of
containers (each container is a subset of vertices).

What is the Container Method?
Answer: A tool for characterizing independent sets in some graphs.

Informal Idea: For any graph satisfying some “nice” conditions, all
independent sets in the graph can be covered by a small number of
containers (each container is a subset of vertices).

Lemma: For any let be a graph such that every
induced subgraph on vertices has at least edges. Then,
there exists a set of containers that satisfies:

1. ,

2. for every , .

3. for every independent set , there exists with .

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ 2V

|$ | ≲ (n
1/ϵ)
C ∈ $ |C | ≲ (1 − ϵ)ρn

I C ∈ $ I ⊆ C

An Initial Graph Container Lemma

[Kleitman, Winston ’82]

Lemma: For any let be a graph such that every
induced subgraph on vertices has at least edges. Then,
there exists a set of containers that satisfies:

1. ,

2. for every , .

3. for every independent set , there exists with .

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ 2V

|$ | ≲ (n
1/ϵ)
C ∈ $ |C | ≲ (1 − ϵ)ρn

I C ∈ $ I ⊆ C

An Initial Graph Container Lemma

[Kleitman, Winston ’82]

Note: for survey of combinatorial applications see "Counting Indepedent Sets in
Graphs" by Samotij or "The method of hypergraph containers" by Balogh,
Morris, and Samotij.

Application to Non-Tolerant Testing

vs.

Application to Non-Tolerant Testing

vs.

Testing Algorithm: Take a random sample of vertices,
check if the induced subgraph has a independent set.

S s ∼ ρ3/ϵ2

G[S] ρs
[Blais, Seth ’23]

Application to Non-Tolerant Testing

vs.

Testing Algorithm: Take a random sample of vertices,
check if the induced subgraph has a independent set.

S s ∼ ρ3/ϵ2

G[S] ρs
[Blais, Seth ’23]

Application to Non-Tolerant Testing

vs.

Testing Algorithm: Take a random sample of vertices,
check if the induced subgraph has a independent set.

S s ∼ ρ3/ϵ2

G[S] ρs
[Blais, Seth ’23]

Application to Non-Tolerant Testing

vs.

Testing Algorithm: Take a random sample of vertices,
check if the induced subgraph has a independent set.

S s ∼ ρ3/ϵ2

G[S] ρs

Key Challenge: If is -far from having a independent set,
show that has a independent set with only small probability.

G ϵ ρn
S ρs

[Blais, Seth ’23]

Application of Container Lemma

Key Challenge: If is -far from having a independent set,
show that has a independent set with only small probability.

G ϵ ρn
S ρs

Application of Container Lemma

Use Container Lemma*: Every independent set is contained in a
container! Each container is of size at most and
there are at most of them.

|C | < (1 − ϵ)ρn
(n

1/ϵ)

Key Challenge: If is -far from having a independent set,
show that has a independent set with only small probability.

G ϵ ρn
S ρs

* [Blais, Seth ’23] proved a stronger container lemma compared to the lemma of [Kleitman, Winston ’82]

Application of Container Lemma

Use Container Lemma*: Every independent set is contained in a
container! Each container is of size at most and
there are at most of them.

|C | < (1 − ϵ)ρn
(n

1/ϵ)

Key Challenge: If is -far from having a independent set,
show that has a independent set with only small probability.

G ϵ ρn
S ρs

* [Blais, Seth ’23] proved a stronger container lemma compared to the lemma of [Kleitman, Winston ’82]

Pr[S contains a ρs independent set]

Application of Container Lemma

Use Container Lemma*: Every independent set is contained in a
container! Each container is of size at most and
there are at most of them.

|C | < (1 − ϵ)ρn
(n

1/ϵ)

Key Challenge: If is -far from having a independent set,
show that has a independent set with only small probability.

G ϵ ρn
S ρs

* [Blais, Seth ’23] proved a stronger container lemma compared to the lemma of [Kleitman, Winston ’82]

Pr[S contains a ρs independent set]

≤ ∑
C∈$

Pr[S contains at least ρs vertices from C]

Application of Container Lemma

Use Container Lemma*: Every independent set is contained in a
container! Each container is of size at most and
there are at most of them.

|C | < (1 − ϵ)ρn
(n

1/ϵ)

Key Challenge: If is -far from having a independent set,
show that has a independent set with only small probability.

G ϵ ρn
S ρs

* [Blais, Seth ’23] proved a stronger container lemma compared to the lemma of [Kleitman, Winston ’82]

Pr[S contains a ρs independent set]

≤ ∑
C∈$

Pr[S contains at least ρs vertices from C]

≲ (n
1/ϵ) e−ϵ2s

Application of Container Lemma

Use Container Lemma*: Every independent set is contained in a
container! Each container is of size at most and
there are at most of them.

|C | < (1 − ϵ)ρn
(n

1/ϵ)

Key Challenge: If is -far from having a independent set,
show that has a independent set with only small probability.

G ϵ ρn
S ρs

* [Blais, Seth ’23] proved a stronger container lemma compared to the lemma of [Kleitman, Winston ’82]

Pr[S contains a ρs independent set]

≤ ∑
C∈$

Pr[S contains at least ρs vertices from C]

≲ (n
1/ϵ) e−ϵ2s ≤ 1/3, as long as s ≳ log n

ϵ3 .

Towards a Tolerant Tester

vs.

 vertices with at most edgesρn ϵ
polylog(1/ϵ) n2 at least edgesϵn2

Towards a Tolerant Tester

Testing Algorithm: Take a random sample of vertices,
check if the induced subgraph has an induced subgraph of
size with fewer than edges.

S s ∼ ρ3/ϵ2

G[S]
ρs ϵ

polylog(1/ϵ) s2

vs.

 vertices with at most edgesρn ϵ
polylog(1/ϵ) n2 at least edgesϵn2

Towards a Tolerant Tester

Testing Algorithm: Take a random sample of vertices,
check if the induced subgraph has an induced subgraph of
size with fewer than edges.

S s ∼ ρ3/ϵ2

G[S]
ρs ϵ

polylog(1/ϵ) s2

vs.

 vertices with at most edgesρn ϵ
polylog(1/ϵ) n2 at least edgesϵn2

Towards a Tolerant Tester

Testing Algorithm: Take a random sample of vertices,
check if the induced subgraph has an induced subgraph of
size with fewer than edges.

S s ∼ ρ3/ϵ2

G[S]
ρs ϵ

polylog(1/ϵ) s2

vs.

 vertices with at most edgesρn ϵ
polylog(1/ϵ) n2 at least edgesϵn2

Towards a Tolerant Tester

Testing Algorithm: Take a random sample of vertices,
check if the induced subgraph has an induced subgraph of
size with fewer than edges.

S s ∼ ρ3/ϵ2

G[S]
ρs ϵ

polylog(1/ϵ) s2

Key Challenge: If is -far from having a independent set,
show that has a sparse set with only small probability.

G ϵ ρn
S ρs

vs.

 vertices with at most edgesρn ϵ
polylog(1/ϵ) n2 at least edgesϵn2

Towards a Tolerant Tester

Testing Algorithm: Take a random sample of vertices,
check if the induced subgraph has an induced subgraph of
size with fewer than edges.

S s ∼ ρ3/ϵ2

G[S]
ρs ϵ

polylog(1/ϵ) s2

Key Challenge: If is -far from having a independent set,
show that has a sparse set with only small probability.

G ϵ ρn
S ρs

vs.

 vertices with at most edgesρn ϵ
polylog(1/ϵ) n2 at least edgesϵn2

Induced subgraph has fewer than edgesϵ
polylog(1/ϵ) s2

A Container Lemma For Sparse Sets
Desired Lemma?: For any let be a graph such that every
induced subgraph on vertices has at least edges. Then, there
exists a set of containers that satisfies:

1. ,

2. for every , .

3. For every set such that has fewer than
edges, there exists with .

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ 2V

|$ | ≲ (n
1/ϵ)
C ∈ $ |C | < ρn

J ⊆ V G[J] ϵ
polylog(1/ϵ) |J |2

C ∈ $ J ⊆ C

A Container Lemma For Sparse Sets
Desired Lemma?: For any let be a graph such that every
induced subgraph on vertices has at least edges. Then, there
exists a set of containers that satisfies:

1. ,

2. for every , .

3. For every set such that has fewer than
edges, there exists with .

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ 2V

|$ | ≲ (n
1/ϵ)
C ∈ $ |C | < ρn

J ⊆ V G[J] ϵ
polylog(1/ϵ) |J |2

C ∈ $ J ⊆ C

This is not possible

(more details in a few slides)

A Container Lemma For Sparse Sets
Desired Lemma?: For any let be a graph such that every
induced subgraph on vertices has at least edges. Then, there
exists a set of containers that satisfies:

1. ,

2. for every , .

3. For every set such that has fewer than
edges, there exists with .

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ 2V

|$ | ≲ (n
1/ϵ)
C ∈ $ |C | < ρn

J ⊆ V G[J] ϵ
polylog(1/ϵ) |J |2

C ∈ $ J ⊆ C

This is not possible

(more details in a few slides)

No prior results of this form. Only
similar results on “sparse subgraphs”
apply to subgraphs with smaller
density or bounded max degree.

[Nenadov ’24] [Saxton, Thomason ’15]

A Container Lemma For Sparse Sets
Lemma*: For any let be a graph such that every induced
subgraph on vertices has at least edges. Then, there exists a set

 of containers that satisfies:

1. ,

2. for every , .

3. For every set such that has fewer than

edges, there exists and such that and

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ 2V

|$ | ≲ (n
1/ϵ)
C ∈ $ |C | < ρn

J ⊆ V G[J] ϵ
polylog(1/ϵ) |J |2

C ∈ $ α |C | ≤ (1 − α)ρn

|C ∩ J | ≥ (1 − α
2) |J | .

* Omitting some details

A Container Lemma For Sparse Sets
Lemma*: For any let be a graph such that every induced
subgraph on vertices has at least edges. Then, there exists a set

 of containers that satisfies:

1. ,

2. for every , .

3. For every set such that has fewer than

edges, there exists and such that and

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ 2V

|$ | ≲ (n
1/ϵ)
C ∈ $ |C | < ρn

J ⊆ V G[J] ϵ
polylog(1/ϵ) |J |2

C ∈ $ α |C | ≤ (1 − α)ρn

|C ∩ J | ≥ (1 − α
2) |J | .

Informally: each sparse set is “mostly” contained in a container

* Omitting some details

A Container Lemma For Sparse Sets
Lemma*: For any let be a graph such that every induced
subgraph on vertices has at least edges. Then, there exists a set

 of containers that satisfies:

1. ,

2. for every , .

3. For every set such that has fewer than

edges, there exists and such that and

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ 2V

|$ | ≲ (n
1/ϵ)
C ∈ $ |C | < ρn

J ⊆ V G[J] ϵ
polylog(1/ϵ) |J |2

C ∈ $ α |C | ≤ (1 − α)ρn

|C ∩ J | ≥ (1 − α
2) |J | .

Informally: each sparse set is “mostly” contained in a container

* Omitting some details

Using this new container lemma
instead of standard container
lemma used by Blais, Seth (’23)
we can the prove theorem.

Warmup: How to prove Container Lemma for
Independent Sets - An Encoding Argument

Encoding Independent Sets

Encoding Independent Sets

Encoding Independent Sets

Encoding Independent Sets

How can I give you the most information about an independent
set by just telling you about one of the vertices in ?I I

Encoding Independent Sets

How can I give you the most information about an independent
set by just telling you about one of the vertices in ?I I

Answer: Send the vertex with highest degree.v ∈ I

Encoding Independent Sets

How can I give you the most information about an independent
set by just telling you about one of the vertices in ?I I

Answer: Send the vertex with highest degree.v ∈ I

Encoding Independent Sets

How can I give you the most information about an independent
set by just telling you about one of the vertices in ?I I

Answer: Send the vertex with highest degree.v ∈ I

Encoding Independent Sets

How can I give you the most information about an independent
set by just telling you about one of the vertices in ?I I

Answer: Send the vertex with highest degree.v ∈ I

Encoding Independent Sets

How can I give you the most information about an independent
set by just telling you about one of the vertices in ?I I

Answer: Send the vertex with highest degree.v ∈ I

Container Generator Algorithm
Input: Graph and an independent set

• Initialize fingerprint and container

• Repeatedly select a vertex with highest degree in and add
it to . Remove and all vertices with higher degree than from .

G I
F = ∅ C = V

v ∈ I G[C]
F N(v) v C

Container Generator Algorithm
Input: Graph and an independent set

• Initialize fingerprint and container

• Repeatedly select a vertex with highest degree in and add
it to . Remove and all vertices with higher degree than from .

G I
F = ∅ C = V

v ∈ I G[C]
F N(v) v C

Container Generator Algorithm
Input: Graph and an independent set

• Initialize fingerprint and container

• Repeatedly select a vertex with highest degree in and add
it to . Remove and all vertices with higher degree than from .

G I
F = ∅ C = V

v ∈ I G[C]
F N(v) v C

1st Iteration

Container Generator Algorithm
Input: Graph and an independent set

• Initialize fingerprint and container

• Repeatedly select a vertex with highest degree in and add
it to . Remove and all vertices with higher degree than from .

G I
F = ∅ C = V

v ∈ I G[C]
F N(v) v C

1st Iteration

Container Generator Algorithm
Input: Graph and an independent set

• Initialize fingerprint and container

• Repeatedly select a vertex with highest degree in and add
it to . Remove and all vertices with higher degree than from .

G I
F = ∅ C = V

v ∈ I G[C]
F N(v) v C

2nd Iteration

Container Generator Algorithm
Input: Graph and an independent set

• Initialize fingerprint and container

• Repeatedly select a vertex with highest degree in and add
it to . Remove and all vertices with higher degree than from .

G I
F = ∅ C = V

v ∈ I G[C]
F N(v) v C

Final Iteration

Container Generator Algorithm
Input: Graph and an independent set

• Initialize fingerprint and container

• Repeatedly select a vertex with highest degree in and add
it to . Remove and all vertices with higher degree than from .

G I
F = ∅ C = V

v ∈ I G[C]
F N(v) v C

Final Iteration

Container Generator Algorithm
Input: Graph and an independent set

• Initialize fingerprint and container

• Repeatedly select a vertex with highest degree in and add
it to . Remove and all vertices with higher degree than from .

G I
F = ∅ C = V

v ∈ I G[C]
F N(v) v C

Final Iteration

Key Observations:

•

•

I ⊆ C(I)
C(I) = C(F(I))

Lemma: For any let be a graph such that every
induced subgraph on vertices has at least edges. Then,
there exists a set of containers that satisfies:

1. ,

2. for every , .

3. for every independent set , there exists with .

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ 2V

|$ | ≲ (n
1/ϵ)
C ∈ $ |C | < ρn

I C ∈ $ I ⊆ C

Container Lemma for Independent Sets - Restated

[Kleitman, Winston ’82]

Lemma: For any let be a graph such that every
induced subgraph on vertices has at least edges. Then,
there exists a set of containers that satisfies:

1. ,

2. for every , .

3. for every independent set , there exists with .

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ 2V

|$ | ≲ (n
1/ϵ)
C ∈ $ |C | < ρn

I C ∈ $ I ⊆ C

Container Lemma for Independent Sets - Restated

[Kleitman, Winston ’82]

Question: how do we construct the collection of containers?

Lemma: For any let be a graph such that every
induced subgraph on vertices has at least edges. Then,
there exists a set of containers that satisfies:

1. ,

2. for every , .

3. for every independent set , there exists with .

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ 2V

|$ | ≲ (n
1/ϵ)
C ∈ $ |C | < ρn

I C ∈ $ I ⊆ C

Container Lemma for Independent Sets - Restated

[Kleitman, Winston ’82]

Question: how do we construct the collection of containers?
Answer:

Lemma: For any let be a graph such that every
induced subgraph on vertices has at least edges. Then,
there exists a set of containers that satisfies:

1. ,

2. for every , .

3. for every independent set , there exists with .

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ 2V

|$ | ≲ (n
1/ϵ)
C ∈ $ |C | < ρn

I C ∈ $ I ⊆ C

Container Lemma for Independent Sets - Restated

[Kleitman, Winston ’82]

Let is an independent set in $ = {C(I) : I G}

Question: how do we construct the collection of containers?
Answer:

Lemma: For any let be a graph such that every
induced subgraph on vertices has at least edges. Then,
there exists a set of containers that satisfies:

1. ,

2. for every , .

3. for every independent set , there exists with .

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ 2V

|$ | ≲ (n
1/ϵ)
C ∈ $ |C | < ρn

I C ∈ $ I ⊆ C

Container Lemma for Independent Sets - Restated

[Kleitman, Winston ’82]

Let is an independent set in $ = {C(I) : I G}
 is an independent set in = {C(F(I)) : I G}

Question: how do we construct the collection of containers?
Answer:

Lemma: For any let be a graph such that every
induced subgraph on vertices has at least edges. Then,
there exists a set of containers that satisfies:

1. ,

2. for every , .

3. for every independent set , there exists with .

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ 2V

|$ | ≲ (n
1/ϵ)
C ∈ $ |C | < ρn

I C ∈ $ I ⊆ C

Container Lemma for Independent Sets - Restated

[Kleitman, Winston ’82]

Let is an independent set in $ = {C(I) : I G}
 is an independent set in = {C(F(I)) : I G}
 for some independent set in = {C(F) : F = F(I) I G}

Question: how do we construct the collection of containers?
Answer:

How to prove new Container Lemma for Sparse
Sets - An Encoding Argument

A Container Lemma For Sparse Sets (restated)

Lemma*: For any let be a graph such that every induced
subgraph on vertices has at least edges. Then, there exists a set

 of containers that satisfies:

1. ,

2. for every , .

3. For every set such that has fewer than

edges, there exists and such that and

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ 2V

|$ | ≲ (n
1/ϵ)
C ∈ $ |C | < ρn

J ⊆ V G[J] ϵ
polylog(1/ϵ) |J |2

C ∈ $ α |C | ≤ (1 − α)ρn

|C ∩ J | ≥ (1 − α
2) |J | .

* Omitting some details

Informally: each sparse set is “mostly” contained in a container

Encoding Sparse Sets

Encoding Sparse Sets

Encoding Sparse Sets

Encoding Sparse Sets

Encoding Sparse Sets

How can I give you the most information about a sparse set by
just telling you about one (or two) of the vertices in ?

J
J

Encoding Sparse Sets

How can I give you the most information about a sparse set by
just telling you about one (or two) of the vertices in ?

J
J

Answer: Send and remove higher degree vertices

Encoding Sparse Sets

How can I give you the most information about a sparse set by
just telling you about one (or two) of the vertices in ?

J
J

Answer: Send and remove higher degree vertices

Encoding Sparse Sets

How can I give you the most information about a sparse set by
just telling you about one (or two) of the vertices in ?

J
J

Answer: Send and remove higher degree vertices
Send and remove neighbours

Encoding Sparse Sets

How can I give you the most information about a sparse set by
just telling you about one (or two) of the vertices in ?

J
J

Answer: Send and remove higher degree vertices
Send and remove neighbours

Container Generator Algorithm - Sparse Sets
Input: Graph and a sparse set

• Initialize fingerprint and container

• Repeat while has more than edges

• select a vertex and an operation of
“remove neighbours” or “remove higher
degree vertices” that maximizes the following:

• apply operation to container, add and
operation to

G J
F = ∅ C = V

G[C] ϵn2

v ∈ J

v
F

vertices removed from C by operation
vertices in J removed from C by operation

Container Generator Algorithm - Sparse Sets
Input: Graph and a sparse set

• Initialize fingerprint and container

• Repeat while has more than edges

• select a vertex and an operation of
“remove neighbours” or “remove higher
degree vertices” that maximizes the following:

• apply operation to container, add and
operation to

G J
F = ∅ C = V

G[C] ϵn2

v ∈ J

v
F

vertices removed from C by operation
vertices in J removed from C by operation

Container Generator Algorithm - Sparse Sets
Input: Graph and a sparse set

• Initialize fingerprint and container

• Repeat while has more than edges

• select a vertex and an operation of
“remove neighbours” or “remove higher
degree vertices” that maximizes the following:

• apply operation to container, add and
operation to

G J
F = ∅ C = V

G[C] ϵn2

v ∈ J

v
F

vertices removed from C by operation
vertices in J removed from C by operation

Container Generator Algorithm - Sparse Sets
Input: Graph and a sparse set

• Initialize fingerprint and container

• Repeat while has more than edges

• select a vertex and an operation of
“remove neighbours” or “remove higher
degree vertices” that maximizes the following:

• apply operation to container, add and
operation to

G J
F = ∅ C = V

G[C] ϵn2

v ∈ J

v
F

vertices removed from C by operation
vertices in J removed from C by operation

Observations:

• can be reconstructed from

• is NOT fully contained in

C(J) F(J)
J C(J)

Intuition: Procedure makes Progress

vertices removed from C by operation
vertices in J removed from C by operation

≳ log(1/ϵ) ⋅ n
|J |

Claim: In every step of procedure where has more than edges:
G[C] ϵn2

Intuition: Procedure makes Progress

vertices removed from C by operation
vertices in J removed from C by operation

≳ log(1/ϵ) ⋅ n
|J |

Claim: In every step of procedure where has more than edges:
G[C] ϵn2

Informally: in every step the procedure removes “much” more from
the current container than from (relatively).C J

Intuition: Procedure makes Progress

vertices removed from C by operation
vertices in J removed from C by operation

≳ log(1/ϵ) ⋅ n
|J |

Claim: In every step of procedure where has more than edges:
G[C] ϵn2

Informally: in every step the procedure removes “much” more from
the current container than from (relatively).C J

For example, if vertices are removed from then only

vertices of are removed from .

n
2 C |J |

2 log(1/ϵ)
J C

Proof of Claim: Some Examples

vertices removed from C by operation
vertices in J removed from C by operation

≳ log(1/ϵ) ⋅ n
|J |

Claim: In every step of procedure where has more than edges:
G[C] ϵn2

Example 1: Suppose is the random graph on vertices with edge density ,

and plant the sparse set (has fewer than edges).

G[C] n ϵ
J ϵ

log2(1/ϵ) |J |2

Proof of Claim: Some Examples

vertices removed from C by operation
vertices in J removed from C by operation

≳ log(1/ϵ) ⋅ n
|J |

Claim: In every step of procedure where has more than edges:
G[C] ϵn2

Example 1: Suppose is the random graph on vertices with edge density ,

and plant the sparse set (has fewer than edges).

G[C] n ϵ
J ϵ

log2(1/ϵ) |J |2

Proof of Claim: Some Examples

vertices removed from C by operation
vertices in J removed from C by operation

≳ log(1/ϵ) ⋅ n
|J |

Claim: In every step of procedure where has more than edges:
G[C] ϵn2

Example 1: Suppose is the random graph on vertices with edge density ,

and plant the sparse set (has fewer than edges).

G[C] n ϵ
J ϵ

log2(1/ϵ) |J |2

• Pick a vertex with degree
less than in .

v ∈ J
ϵ

log2(1/ϵ) |J | G[J]

Proof of Claim: Some Examples

vertices removed from C by operation
vertices in J removed from C by operation

≳ log(1/ϵ) ⋅ n
|J |

Claim: In every step of procedure where has more than edges:
G[C] ϵn2

Example 1: Suppose is the random graph on vertices with edge density ,

and plant the sparse set (has fewer than edges).

G[C] n ϵ
J ϵ

log2(1/ϵ) |J |2

• Pick a vertex with degree
less than in .

v ∈ J
ϵ

log2(1/ϵ) |J | G[J]
Such a vertex exists because this
is the average degree in G[J]

Proof of Claim: Some Examples

vertices removed from C by operation
vertices in J removed from C by operation

≳ log(1/ϵ) ⋅ n
|J |

Claim: In every step of procedure where has more than edges:
G[C] ϵn2

Example 1: Suppose is the random graph on vertices with edge density ,

and plant the sparse set (has fewer than edges).

G[C] n ϵ
J ϵ

log2(1/ϵ) |J |2

• Pick a vertex with degree
less than in .

v ∈ J
ϵ

log2(1/ϵ) |J | G[J]
Such a vertex exists because this
is the average degree in G[J]

• Using “remove neighbours”
operation, can remove vertices
from and less than
vertices of from .

ϵn
C ϵ

log2(1/ϵ) |J |
J C

Proof of Claim: Some Examples

vertices removed from C by operation
vertices in J removed from C by operation

≳ log(1/ϵ) ⋅ n
|J |

Claim: In every step of procedure where has more than edges:
G[C] ϵn2

Example 2: Suppose has vertices with degree .G[C] ϵn n

 vertices adjacent to everythingϵn

Proof of Claim: Some Examples

vertices removed from C by operation
vertices in J removed from C by operation

≳ log(1/ϵ) ⋅ n
|J |

Claim: In every step of procedure where has more than edges:
G[C] ϵn2

Example 2: Suppose has vertices with degree .G[C] ϵn n

• If there is a vertex with degree
less than in and
degree in then select and
“remove neighbours” operation

v ∈ J
1

log(1/ϵ) |J | G[J]
n G[C] v

 vertices adjacent to everythingϵn

Proof of Claim: Some Examples

vertices removed from C by operation
vertices in J removed from C by operation

≳ log(1/ϵ) ⋅ n
|J |

Claim: In every step of procedure where has more than edges:
G[C] ϵn2

Example 2: Suppose has vertices with degree .G[C] ϵn n

• If there is a vertex with degree
less than in and
degree in then select and
“remove neighbours” operation

v ∈ J
1

log(1/ϵ) |J | G[J]
n G[C] v

• Otherwise, select with degree
less than in and “remove
higher degree vertices” operation, will
remove vertices from and less
than vertices of from

v ∈ J
n G[C]

ϵn C
ϵ

log(1/ϵ) |J | J C
 vertices adjacent to everythingϵn

Proof of Claim

vertices removed from C by operation
vertices in J removed from C by operation

≳ log(1/ϵ) ⋅ n
|J |

Claim: In every step of procedure where has more than edges:
G[C] ϵn2

Proof: Use the following lemma to generalize 2 cases.

Lemma: If has more than edges, then there exists
such that every vertex in has degree at least (roughly) in .

G[C] ϵn2 U ⊆ V
U ϵn2

|U |
G[C]

 vertices each with degree|U | ≳ ϵn2

|U |

Proof of Claim

vertices removed from C by operation
vertices in J removed from C by operation

≳ log(1/ϵ) ⋅ n
|J |

Claim: In every step of procedure where has more than edges:
G[C] ϵn2

Proof: Use the following lemma to generalize 2 cases.

Lemma: If has more than edges, then there exists
such that every vertex in has degree at least (roughly) in .

G[C] ϵn2 U ⊆ V
U ϵn2

|U |
G[C]

Proof of Claim

vertices removed from C by operation
vertices in J removed from C by operation

≳ log(1/ϵ) ⋅ n
|J |

Claim: In every step of procedure where has more than edges:
G[C] ϵn2

Proof: Use the following lemma to generalize 2 cases.

• If there is a vertex with degree less than in and degree

at least in then can select and “remove neighbours” operation

v ∈ J ϵn
log(1/ϵ) |U |

|J | G[J]
ϵn2

|U |
G[C] v

Lemma: If has more than edges, then there exists
such that every vertex in has degree at least (roughly) in .

G[C] ϵn2 U ⊆ V
U ϵn2

|U |
G[C]

Proof of Claim

vertices removed from C by operation
vertices in J removed from C by operation

≳ log(1/ϵ) ⋅ n
|J |

Claim: In every step of procedure where has more than edges:
G[C] ϵn2

Proof: Use the following lemma to generalize 2 cases.

• If there is a vertex with degree less than in and degree

at least in then can select and “remove neighbours” operation

v ∈ J ϵn
log(1/ϵ) |U |

|J | G[J]
ϵn2

|U |
G[C] v

• Otherwise, select with degree less than in and “remove higher

degree vertices” operation, will remove vertices from and less than
vertices of from

v ∈ J ϵn2

|U |
G[C]

|U | C
|U |

log(1/ϵ)n |J | J C

Lemma: If has more than edges, then there exists
such that every vertex in has degree at least (roughly) in .

G[C] ϵn2 U ⊆ V
U ϵn2

|U |
G[C]

Towards Proving Stronger Lemma
Lemma (Restated): For any let be a graph such that
every induced subgraph on vertices has at least edges. Then,
there exists a set of containers that satisfies:

1. ,

2. for every , .

3. For every set such that has fewer than

edges, there exists and such that and

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ P(V)

|$ | ≲ (n
1/ϵ)
C ∈ $ |C | < ρn

J ⊆ V G[J] ϵ
polylog(1/ϵ) |J |2

C ∈ $ α |C | ≤ (1 − α)ρn

|C ∩ J | ≥ (1 − α
2) |J | .

• Full proof involves showing that when container is large (close to) the
container procedure makes faster progress OR we can shrink the
container at the end of the process (full details in paper)

ρn

Another Application of new Container Lemma

Theorem: Let be a —regular graph. Then the number of

independent sets in is at most , and there exists a
—regular graph achieving this maximum (copies of).

G d
G 2

n
2 (1 + 1

d)
d n

2d
Kd,d

Counting Independent Sets in Regular Graphs

[Zhao ’10] [Alon ’91]

Theorem: Let be a —regular graph. Then the number of

independent sets in is at most , and there exists a
—regular graph achieving this maximum (copies of).

G d
G 2

n
2 (1 + 1

d)
d n

2d
Kd,d

Counting Independent Sets in Regular Graphs

Conjectured by Alon (’91), proven over series of improvements:

[Zhao ’10] [Alon ’91]

[Sapozhenko ’01], [Kahn ’01], [Galvin ’09]

Theorem: Let be a —regular graph. Then the number of

independent sets in is at most , and there exists a
—regular graph achieving this maximum (copies of).

G d
G 2

n
2 (1 + 1

d)
d n

2d
Kd,d

Counting Independent Sets in Regular Graphs

Conjectured by Alon (’91), proven over series of improvements:

[Zhao ’10] [Alon ’91]

[Sapozhenko ’01], [Kahn ’01], [Galvin ’09]

One of the classic applications of container method

Theorem: Let be a —regular graph. Then the number of

independent sets in is at most , and there exists a
—regular graph achieving this maximum (copies of).

G d
G 2

n
2 (1 + 1

d)
d n

2d
Kd,d

Counting Independent Sets in Regular Graphs

Conjectured by Alon (’91), proven over series of improvements:

[Zhao ’10] [Alon ’91]

[Sapozhenko ’01], [Kahn ’01], [Galvin ’09]

One of the classic applications of container method

Question: What about sparse sets in a —regular graph?
Can we use the new container lemma in place of the
standard container lemma used by Sapozhenko?

d

Theorem: Let be a —regular graph. Let . Then the
number of induced subgraphs in with edge density less is at most

G d k ≥ polylog(n)
G 1

k
d
n

Counting Sparse Sets in Regular Graphs

[This Work]2
n
2 (1 + O(polylog(n)

d) + O(polylog(n)
k1/3)) .

Theorem: Let be a —regular graph. Let . Then the
number of induced subgraphs in with edge density less is at most

G d k ≥ polylog(n)
G 1

k
d
n

Counting Sparse Sets in Regular Graphs

[This Work]

Remarks:

• Observe that the edge density of is roughly and there are at
least induced subgraphs with edge density at least

G d
n1

2 2n 4d
n

• [Zhao ’10] says that there are at most induced subgraphs
with edge density .

2
n
2 (1 + 1

d)
0

• Our theorem shows that even for edge density up to
there are still only roughly induced subgraphs.

1
polylog(n)

d
n

2 n
2

2
n
2 (1 + O(polylog(n)

d) + O(polylog(n)
k1/3)) .

Theorem: Let be a —regular graph. Let . Then the
number of induced subgraphs in with edge density less is at most

G d k ≥ polylog(n)
G 1

k
d
n

Counting Sparse Sets in Regular Graphs

[This Work]

Remarks:

• Observe that the edge density of is roughly and there are at
least induced subgraphs with edge density at least

G d
n1

2 2n 4d
n

• [Zhao ’10] says that there are at most induced subgraphs
with edge density .

2
n
2 (1 + 1

d)
0

• Our theorem shows that even for edge density up to
there are still only roughly induced subgraphs.

1
polylog(n)

d
n

2 n
2

• copies of gives lower bound of n
2d

Kd,d 2
n
2 (1 + 1

d + 1
k)

2
n
2 (1 + O(polylog(n)

d) + O(polylog(n)
k1/3)) .

Summary and Open Questions

Summary: We prove a new container lemma for sparse subgraphs,
and use it to show that there is a — tolerant tester for

the independent set property with sample complexity .
(ϵ

polylog(1/ϵ) , ϵ)
ρn Õ(ρ3/ϵ2)

Open Questions

Summary: We prove a new container lemma for sparse subgraphs,
and use it to show that there is a — tolerant tester for

the independent set property with sample complexity .
(ϵ

polylog(1/ϵ) , ϵ)
ρn Õ(ρ3/ϵ2)

Open Questions

Question 1: What about a fully tolerant tester? (i.e. an —
tolerant tester for any)

(ϵ1, ϵ2)
ϵ1 < ϵ2

Summary: We prove a new container lemma for sparse subgraphs,
and use it to show that there is a — tolerant tester for

the independent set property with sample complexity .
(ϵ

polylog(1/ϵ) , ϵ)
ρn Õ(ρ3/ϵ2)

Open Questions

Question 1: What about a fully tolerant tester? (i.e. an —
tolerant tester for any)

(ϵ1, ϵ2)
ϵ1 < ϵ2

Question 2: Can we use similar techniques to (tolerantly) test other
graph properties? (—colorability, —cut, general partition properties)k ρ

Summary: We prove a new container lemma for sparse subgraphs,
and use it to show that there is a — tolerant tester for

the independent set property with sample complexity .
(ϵ

polylog(1/ϵ) , ϵ)
ρn Õ(ρ3/ϵ2)

Open Questions

Question 1: What about a fully tolerant tester? (i.e. an —
tolerant tester for any)

(ϵ1, ϵ2)
ϵ1 < ϵ2

Question 2: Can we use similar techniques to (tolerantly) test other
graph properties? (—colorability, —cut, general partition properties)k ρ

Question 3: Are there other applications of our new container lemma
for sparse subgraphs?

• Counting sparse subgraphs in —regular graphs d ✓

Summary: We prove a new container lemma for sparse subgraphs,
and use it to show that there is a — tolerant tester for

the independent set property with sample complexity .
(ϵ

polylog(1/ϵ) , ϵ)
ρn Õ(ρ3/ϵ2)

Open Questions

Question 1: What about a fully tolerant tester? (i.e. an —
tolerant tester for any)

(ϵ1, ϵ2)
ϵ1 < ϵ2

Question 2: Can we use similar techniques to (tolerantly) test other
graph properties? (—colorability, —cut, general partition properties)k ρ

Question 3: Are there other applications of our new container lemma
for sparse subgraphs?

• Counting sparse subgraphs in —regular graphs d ✓

Thank you!

