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Problem: Distinguish between the cases:

(i)  has a  independent set, and

(ii) every induced subgraph of size  has at least  edges

G ρn
ρn ϵn2

Testing Independent Sets

vs.

Theorem: Inspecting a random subgraph on  vertices is 
sufficient for distinguishing between (i) and (ii) (whp).

Õ(ρ/ϵ4)

[Goldreich, Goldwasser, Ron ’98]



An -tester for the -independent set property is an algorithm that 
samples a set  of  random vertices, examines the induced subgraph 

, and distinguishes between the cases (with high probability):

ϵ ρn
S s

G[S]

Definitions

(i)  has a  independent set, and

(ii) every induced subgraph of size  has at least  edges ( —far)

G ρn
ρn ϵn2 ϵ
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ϵ ρn
Õ(ρ/ϵ4)

Testing Independent Sets

[Goldreich, Goldwasser, Ron ’98]

Theorem: There exists an —tester for the  independent set 
property with sample complexity ,


and any such tester has sample complexity .

ϵ ρn
Õ(ρ3/ϵ2)

Ω(ρ3/ϵ2)

[Blais, Seth ’23]

[Feige, Langberg, Schechtman ’04]
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Weakness with Standard Testing
Standard Testing Problem: Distinguish between the cases:

(i)  has a  independent set, and

(ii) every induced subgraph of size  has at least  edges

G ρn
ρn ϵn2

Question: What if input graph is the following: start with the 
complete graph and plant a set  with  such that 

 has exactly one edge?
U ⊂ V |U | = ρn

G[U]

 vertices with 1 edgeρn

Answer: Testing algorithms have no 
guarantee on this type of input!


Ideally we would like the algorithm to 
accept this type of graph.



Tolerant Testing Independent Sets

vs.

An algorithm that, with high probability, distinguishes between 
(i) and (ii) is called an —tester.(ϵ1, ϵ2)

 vertices with at most  edgesρn ϵ1n2 at least  edgesϵ2n2

[Parnas, Ron, Rubinfeld ’06]
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Tolerant Testing Independent Sets

Remarks: 
• Generalizes the standard testing problem ( )


• In general  may be a function of 

• In some other settings (bounded degree model, boolean strings), 

there is exponential gap between the query complexity of            
—testing and —tolerant testing.

ϵ1 = 0
ϵ1 ϵ2

ϵ (Θ̃(ϵ), ϵ)
[Fischer, Fortnow ’05]

[Goldreich, Wigderson ’22]
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is called an —tester.(ϵ1, ϵ2)



Theorem: There is a — tolerant tester for the  

independent set property with sample complexity .
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Theorem: There is a — tolerant tester for the  

independent set property with sample complexity .
( ϵ

polylog(1/ϵ) , ϵ) ρn
Õ(ρ3/ϵ2)

Main Result

Remarks: 

• Matches the (optimal) sample complexity bound for —testing

• Generalizes container method approach of Blais, Seth ’23

• Best prior result is from a general result for all graph partition 

properties, which gives sample complexity of roughly 


ϵ

(1/ϵ)12

[Fiat, Ron ’21]
[Goldreich, Goldwasser, Ron ’98]

[This Work]



• Main technique to prove theorem: graph container method


• What is the container method?


• How to use the container method to prove testing results  

• A new graph container lemma for sparse subgraphs


• Proof ideas of new container lemma


• Another application of new container lemma

Outline of Talk

[Blais, Seth ’23]

[This Work]
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Lemma: For any  let  be a graph such that every 
induced subgraph on  vertices has at least  edges. Then, 
there exists a set  of containers that satisfies:


1. ,


2. for every , .


3. for every independent set , there exists  with .

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ 2V

|$ | ≲ ( n
1/ϵ)
C ∈ $ |C | ≲ (1 − ϵ)ρn

I C ∈ $ I ⊆ C

An Initial Graph Container Lemma

[Kleitman, Winston ’82]



Lemma: For any  let  be a graph such that every 
induced subgraph on  vertices has at least  edges. Then, 
there exists a set  of containers that satisfies:


1. ,


2. for every , .


3. for every independent set , there exists  with .

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ 2V

|$ | ≲ ( n
1/ϵ)
C ∈ $ |C | ≲ (1 − ϵ)ρn

I C ∈ $ I ⊆ C

An Initial Graph Container Lemma

[Kleitman, Winston ’82]

Note: for survey of combinatorial applications see "Counting Indepedent Sets in 
Graphs" by Samotij or "The method of hypergraph containers" by Balogh, 
Morris, and Samotij.
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Application of Container Lemma

Use Container Lemma*:  Every independent set is contained in a 
container! Each container is of size at most  and 
there are at most  of them.

|C | < (1 − ϵ)ρn
( n

1/ϵ)

Key Challenge: If  is -far from having a  independent set, 
show that  has a  independent set with only small probability.

G ϵ ρn
S ρs

* [Blais, Seth ’23] proved a stronger container lemma compared to the lemma of [Kleitman, Winston ’82]

Pr[S contains a ρs independent set]

≤ ∑
C∈$

Pr[S contains at least ρs vertices from C]

≲ ( n
1/ϵ) e−ϵ2s ≤ 1/3, as long as s ≳ log n

ϵ3 .
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Towards a Tolerant Tester

Testing Algorithm: Take a random sample  of  vertices, 
check if the induced subgraph  has an induced subgraph of 
size  with fewer than   edges.

S s ∼ ρ3/ϵ2

G[S]
ρs ϵ

polylog(1/ϵ) s2

Key Challenge: If  is -far from having a  independent set, 
show that  has a  sparse set with only small probability.

G ϵ ρn
S ρs

vs.

 vertices with at most   edgesρn ϵ
polylog(1/ϵ) n2 at least  edgesϵn2

Induced subgraph has fewer than   edgesϵ
polylog(1/ϵ) s2



A Container Lemma For Sparse Sets
Desired Lemma?: For any  let  be a graph such that every 
induced subgraph on  vertices has at least  edges. Then, there 
exists a set  of containers that satisfies:
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2. for every , .


3. For every set  such that  has fewer than   
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A Container Lemma For Sparse Sets
Desired Lemma?: For any  let  be a graph such that every 
induced subgraph on  vertices has at least  edges. Then, there 
exists a set  of containers that satisfies:


1. ,


2. for every , .


3. For every set  such that  has fewer than   
edges, there exists  with .

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ 2V

|$ | ≲ ( n
1/ϵ)
C ∈ $ |C | < ρn

J ⊆ V G[J] ϵ
polylog(1/ϵ) |J |2

C ∈ $ J ⊆ C

This is not possible

(more details in a few slides)

No prior results of this form. Only 
similar results on “sparse subgraphs” 
apply to subgraphs with smaller 
density or bounded max degree.

[Nenadov ’24]  [Saxton, Thomason ’15]



A Container Lemma For Sparse Sets
Lemma*: For any  let  be a graph such that every induced 
subgraph on  vertices has at least  edges. Then, there exists a set 

 of containers that satisfies:


1. ,


2. for every , .


3. For every set  such that  has fewer than   

edges, there exists  and  such that  and

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ 2V

|$ | ≲ ( n
1/ϵ)
C ∈ $ |C | < ρn

J ⊆ V G[J] ϵ
polylog(1/ϵ) |J |2

C ∈ $ α |C | ≤ (1 − α)ρn

|C ∩ J | ≥ (1 − α
2 ) |J | .

* Omitting some details



A Container Lemma For Sparse Sets
Lemma*: For any  let  be a graph such that every induced 
subgraph on  vertices has at least  edges. Then, there exists a set 

 of containers that satisfies:


1. ,


2. for every , .


3. For every set  such that  has fewer than   

edges, there exists  and  such that  and

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ 2V

|$ | ≲ ( n
1/ϵ)
C ∈ $ |C | < ρn

J ⊆ V G[J] ϵ
polylog(1/ϵ) |J |2

C ∈ $ α |C | ≤ (1 − α)ρn

|C ∩ J | ≥ (1 − α
2 ) |J | .

Informally: each sparse set is “mostly” contained in a container

* Omitting some details
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Lemma*: For any  let  be a graph such that every induced 
subgraph on  vertices has at least  edges. Then, there exists a set 

 of containers that satisfies:


1. ,


2. for every , .


3. For every set  such that  has fewer than   

edges, there exists  and  such that  and
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J ⊆ V G[J] ϵ
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2 ) |J | .

Informally: each sparse set is “mostly” contained in a container

* Omitting some details

Using this new container lemma 
instead of standard container 
lemma used by Blais, Seth (’23)    
we can the prove theorem.



Warmup: How to prove Container Lemma for 
Independent Sets - An Encoding Argument 
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Container Generator Algorithm
Input: Graph  and an independent set 


• Initialize fingerprint  and container  

• Repeatedly select a vertex  with highest degree in  and add 
it to . Remove  and all vertices with higher degree than  from . 


G I
F = ∅ C = V

v ∈ I G[C]
F N(v) v C

Final Iteration

Key Observations:

• 

•

I ⊆ C(I)
C(I) = C(F(I))
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Lemma: For any  let  be a graph such that every 
induced subgraph on  vertices has at least  edges. Then, 
there exists a set  of containers that satisfies:


1. ,


2. for every , .


3. for every independent set , there exists  with .
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ρn ϵn2

$ ⊆ 2V

|$ | ≲ ( n
1/ϵ)
C ∈ $ |C | < ρn

I C ∈ $ I ⊆ C

Container Lemma for Independent Sets - Restated

[Kleitman, Winston ’82]

Let  is an independent set in $ = {C(I) : I G}
          is an independent set in = {C(F(I)) : I G}
          for some independent set  in = {C(F) : F = F(I) I G}

Question: how do we construct the collection of containers?
Answer:



How to prove new Container Lemma for Sparse 
Sets - An Encoding Argument 



A Container Lemma For Sparse Sets (restated)

Lemma*: For any  let  be a graph such that every induced 
subgraph on  vertices has at least  edges. Then, there exists a set 

 of containers that satisfies:


1. ,


2. for every , .


3. For every set  such that  has fewer than   

edges, there exists  and  such that  and

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ 2V

|$ | ≲ ( n
1/ϵ)
C ∈ $ |C | < ρn

J ⊆ V G[J] ϵ
polylog(1/ϵ) |J |2

C ∈ $ α |C | ≤ (1 − α)ρn

|C ∩ J | ≥ (1 − α
2 ) |J | .

* Omitting some details

Informally: each sparse set is “mostly” contained in a container
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Container Generator Algorithm - Sparse Sets
Input: Graph  and a sparse set 


• Initialize fingerprint  and container  

• Repeat while  has more than  edges


• select a vertex  and an operation of 
“remove neighbours” or “remove higher 
degree vertices” that maximizes the following:


• apply operation to container, add  and 
operation to 
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F = ∅ C = V

G[C] ϵn2

v ∈ J

v
F
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Container Generator Algorithm - Sparse Sets
Input: Graph  and a sparse set 


• Initialize fingerprint  and container  

• Repeat while  has more than  edges


• select a vertex  and an operation of 
“remove neighbours” or “remove higher 
degree vertices” that maximizes the following:


• apply operation to container, add  and 
operation to 


G J
F = ∅ C = V

G[C] ϵn2

v ∈ J

v
F

# vertices removed from C by operation
# vertices in J removed from C by operation

Observations:

•  can be reconstructed from 

•  is NOT fully contained in 

C(J) F(J)
J C(J)



Intuition: Procedure makes Progress

# vertices removed from C by operation
# vertices in J removed from C by operation

≳ log(1/ϵ) ⋅ n
|J |

Claim: In every step of procedure where  has more than  edges:
G[C] ϵn2
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Intuition: Procedure makes Progress

# vertices removed from C by operation
# vertices in J removed from C by operation

≳ log(1/ϵ) ⋅ n
|J |

Claim: In every step of procedure where  has more than  edges:
G[C] ϵn2

Informally: in every step the procedure removes “much” more from 
the current container  than from  (relatively).C J

For example, if  vertices are removed from  then only  

vertices of  are removed from .

n
2 C |J |

2 log(1/ϵ)
J C



Proof of Claim: Some Examples
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Proof of Claim: Some Examples

# vertices removed from C by operation
# vertices in J removed from C by operation

≳ log(1/ϵ) ⋅ n
|J |

Claim: In every step of procedure where  has more than  edges:
G[C] ϵn2

Example 1: Suppose  is the random graph on  vertices with edge density ,            

and plant the sparse set  (has fewer than  edges).

G[C] n ϵ
J ϵ

log2(1/ϵ) |J |2

• Pick a vertex  with degree 
less than  in .

v ∈ J
ϵ

log2(1/ϵ) |J | G[J]
Such a vertex exists because this 
is the average degree in G[J]

• Using “remove neighbours” 
operation, can remove  vertices 
from  and less than 
vertices of  from .

ϵn
C ϵ

log2(1/ϵ) |J |
J C
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Example 2: Suppose  has  vertices with degree .G[C] ϵn n

• If there is a vertex  with degree 
less than  in  and 
degree  in  then select  and 
“remove neighbours” operation

v ∈ J
1

log(1/ϵ) |J | G[J]
n G[C] v

• Otherwise, select  with degree 
less than  in  and  “remove 
higher degree vertices” operation, will 
remove  vertices from  and less 
than vertices of  from 

v ∈ J
n G[C]

ϵn C
ϵ

log(1/ϵ) |J | J C
 vertices adjacent to everythingϵn



Proof of Claim

# vertices removed from C by operation
# vertices in J removed from C by operation

≳ log(1/ϵ) ⋅ n
|J |

Claim: In every step of procedure where  has more than  edges:
G[C] ϵn2

Proof: Use the following lemma to generalize 2 cases.

Lemma: If  has more than  edges, then there exists  
such that every vertex in  has degree at least (roughly)  in .

G[C] ϵn2 U ⊆ V
U ϵn2

|U |
G[C]
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≳ log(1/ϵ) ⋅ n
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Claim: In every step of procedure where  has more than  edges:
G[C] ϵn2

Proof: Use the following lemma to generalize 2 cases.

• If there is a vertex  with degree less than  in  and degree 

at least   in  then can select  and “remove neighbours” operation

v ∈ J ϵn
log(1/ϵ) |U |

|J | G[J]
ϵn2

|U |
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# vertices removed from C by operation
# vertices in J removed from C by operation

≳ log(1/ϵ) ⋅ n
|J |

Claim: In every step of procedure where  has more than  edges:
G[C] ϵn2

Proof: Use the following lemma to generalize 2 cases.

• If there is a vertex  with degree less than  in  and degree 

at least   in  then can select  and “remove neighbours” operation

v ∈ J ϵn
log(1/ϵ) |U |

|J | G[J]
ϵn2

|U |
G[C] v

• Otherwise, select  with degree less than   in  and  “remove higher 

degree vertices” operation, will remove  vertices from  and less than 
vertices of  from 

v ∈ J ϵn2

|U |
G[C]

|U | C
|U |

log(1/ϵ)n |J | J C

Lemma: If  has more than  edges, then there exists  
such that every vertex in  has degree at least (roughly)  in .

G[C] ϵn2 U ⊆ V
U ϵn2

|U |
G[C]



Towards Proving Stronger Lemma
Lemma (Restated): For any  let  be a graph such that 
every induced subgraph on  vertices has at least  edges. Then, 
there exists a set  of containers that satisfies:


1. ,


2. for every , .


3. For every set  such that  has fewer than   

edges, there exists  and  such that  and

ϵ, ρ G = (V, E)
ρn ϵn2

$ ⊆ P(V )

|$ | ≲ ( n
1/ϵ)
C ∈ $ |C | < ρn

J ⊆ V G[J] ϵ
polylog(1/ϵ) |J |2

C ∈ $ α |C | ≤ (1 − α)ρn

|C ∩ J | ≥ (1 − α
2 ) |J | .

• Full proof involves showing that when container is large (close to ) the 
container procedure makes faster progress OR we can shrink the 
container at the end of the process (full details in paper)

ρn



Another Application of new Container Lemma 



Theorem: Let  be a —regular graph. Then the number of 

independent sets in  is at most , and there exists a 
—regular graph achieving this maximum (  copies of  ).
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n
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d )
d n

2d
Kd,d

Counting Independent Sets in Regular Graphs

[Zhao ’10] [Alon ’91]
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Theorem: Let  be a —regular graph. Then the number of 

independent sets in  is at most , and there exists a 
—regular graph achieving this maximum (  copies of  ).

G d
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n
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d )
d n
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Kd,d

Counting Independent Sets in Regular Graphs

Conjectured by Alon (’91), proven over series of improvements:

[Zhao ’10] [Alon ’91]

[Sapozhenko ’01], [Kahn ’01], [Galvin ’09]

One of the classic applications of container method

Question: What about sparse sets in a —regular graph? 
Can we use the new container lemma in place of the 
standard container lemma used by Sapozhenko? 

d
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Remarks:
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• [Zhao ’10] says that there are at most  induced subgraphs 
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