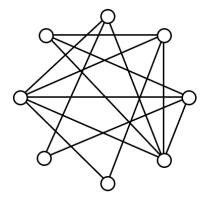
Testing Graph Properties with the Container Method

Eric Blais Cameron Seth

June 5 2024

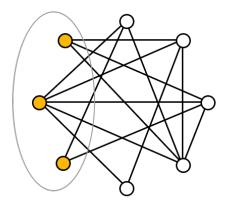
Independent Set Problem

Does a graph on n vertices have an independent set of size ρn ?



Independent Set Problem

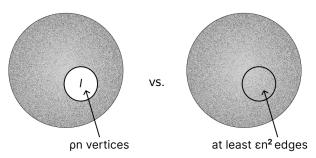
Does a graph on n vertices have an independent set of size ρn ?



Testing Independent Sets

Testing Problem: Distinguish between the cases:

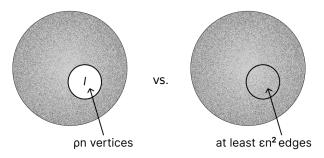
- (i) G has a ρn independent set, and
- (ii) every induced subgraph of size ρn in G has at least ϵn^2 edges.



Testing Independent Sets

Testing Problem: Distinguish between the cases:

- (i) G has a ρn independent set, and
- (ii) every induced subgraph of size ρn in G has at least ϵn^2 edges.



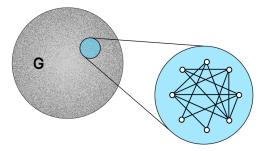
Theorem: Inspecting a random subgraph on $\widetilde{O}(\rho/\epsilon^4)$ vertices is sufficient to distinguish between (i) and (ii).

[Goldreich, Goldwasser, Ron '98]

Definitions

An ϵ -tester for ρ -INDEPSET is an algorithm that samples a set S of s random vertices, examines the induced subgraph G[S], and distinguishes between the cases (with high probability):

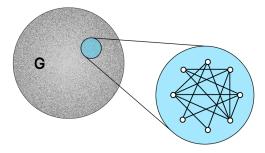
- (i) G has a ρn independent set, and
- (ii) every subgraph of size ρn in G has at least ϵn^2 edges (ϵ -far).



Definitions

An ϵ -tester for ρ -INDEPSET is an algorithm that samples a set S of s random vertices, examines the induced subgraph G[S], and distinguishes between the cases (with high probability):

- (i) G has a ρn independent set, and
- (ii) every subgraph of size ρn in G has at least ϵn^2 edges (ϵ -far).

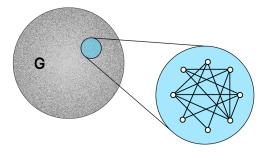


s is the sample complexity of the tester.

Definitions

An ϵ -tester for ρ -INDEPSET is an algorithm that samples a set S of s random vertices, examines the induced subgraph G[S], and distinguishes between the cases (with high probability):

- (i) G has a ρn independent set, and
- (ii) every subgraph of size ρn in G has at least ϵn^2 edges (ϵ -far).



s is the sample complexity of the tester.

Question: What is the minimum sample complexity $S_{\rho\text{-INDEPSET}}(n, \epsilon)$ of ϵ -testing the ρ -INDEPSET property?

Results

Prior Results: The sample complexity $S_{\rho\text{-INDEPSET}}(n,\epsilon)$ for ϵ -testing $\rho\text{-INDEPSET}$ is bounded above by:

 $ightharpoonup \widetilde{O}(\rho/\epsilon^4)$

[Goldreich, Goldwasser, Ron '98]

 $ightharpoonup \widetilde{O}(\rho^4/\epsilon^3)$

[Feige, Langberg, Schechtman '04]

and it is bounded below by:

 $ightharpoonup \widetilde{\Omega}(\rho^3/\epsilon^2).$

[Feige, Langberg, Schechtman '04]

Results

Prior Results: The sample complexity $S_{\rho\text{-INDEPSET}}(n,\epsilon)$ for ϵ -testing $\rho\text{-INDEPSET}$ is bounded above by:

 $ightharpoonup \widetilde{O}(\rho/\epsilon^4)$

[Goldreich, Goldwasser, Ron '98]

 $ightharpoonup \widetilde{O}(\rho^4/\epsilon^3)$

[Feige, Langberg, Schechtman '04]

and it is bounded below by:

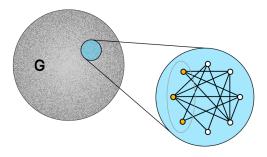
 $\triangleright \widetilde{\Omega}(\rho^3/\epsilon^2).$

[Feige, Langberg, Schechtman '04]

Our Result: $S_{\rho\text{-INDEPSET}}(n, \epsilon) = \widetilde{\Theta}(\rho^3/\epsilon^2)$.

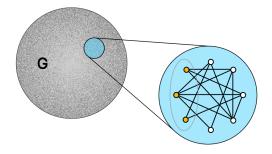
Proof Overview

Testing Algorithm: Take a random sample S of s vertices, check if the induced subgraph G[S] has a ρs independent set.



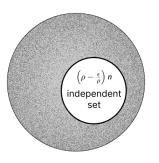
Proof Overview

Testing Algorithm: Take a random sample S of s vertices, check if the induced subgraph G[S] has a ρs independent set.

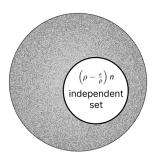


Key Challenge: Show that if G is ϵ -far from having a ρn independent set then a random induced subgraph on $s \approx \rho^3/\epsilon^2$ vertices has a ρs independent set with only small probability.

Observation: If G is ϵ -far from having a ρn independent set then the largest independent set in G is of size roughly $\left(\rho-\frac{\epsilon}{\rho}\right)n$.



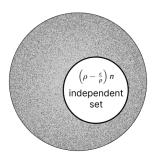
Observation: If G is ϵ -far from having a ρn independent set then the largest independent set in G is of size roughly $\left(\rho-\frac{\epsilon}{\rho}\right)n$.



Approach:

▶ Upper bound the probability of getting ρs vertices in a sample of size s from a single $\left(\rho - \frac{\epsilon}{\rho}\right)n$ independent set.

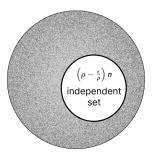
Observation: If G is ϵ -far from having a ρn independent set then the largest independent set in G is of size roughly $\left(\rho-\frac{\epsilon}{\rho}\right)n$.



Approach:

- Upper bound the probability of getting ρs vertices in a sample of size s from a single $\left(\rho-\frac{\epsilon}{\rho}\right)n$ independent set.
- ▶ Union bound over all possible $\binom{n}{\left(\rho-\frac{\epsilon}{\rho}\right)n}$ independent sets.

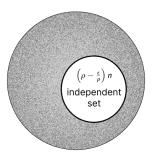
Observation: If G is ϵ -far from having a ρn independent set then the largest independent set in G is of size roughly $\left(\rho-\frac{\epsilon}{\rho}\right)n$.



Approach:

- ▶ Upper bound the probability of getting ρs vertices in a sample of size s from a single $\left(\rho \frac{\epsilon}{\rho}\right)n$ independent set.
- ▶ Union bound over all possible $\binom{n}{\left(\rho-\frac{\epsilon}{\rho}\right)n}$ independent sets.

Observation: If G is ϵ -far from having a ρn independent set then the largest independent set in G is of size roughly $\left(\rho - \frac{\epsilon}{\rho}\right)n$.



Approach:

- ▶ Upper bound the probability of getting ρs vertices in a sample of size s from a single $\left(\rho \frac{\epsilon}{\rho}\right) n$ independent set.
- ▶ Union bound over all possible $\binom{n}{\left(\rho-\frac{\epsilon}{\rho}\right)n}$ independent sets.

Solution: The Graph Container Method

Graph Container Method

An Initial Graph Container Lemma

An Initial Graph Container Lemma

Lemma. Let G = (V, E) be ϵ -far from ρ -INDEPSET . Then, there exists a collection $\mathscr{C} \subseteq P(V)$ of containers that satisfies:

- 1. for every independent set I, there exists $C \in \mathcal{C}$ with $I \subseteq C$,
- 2. for every $C \in \mathscr{C}, |C| \lesssim \left(\rho \frac{\epsilon}{\rho}\right) n$, and
- 3. $|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$.

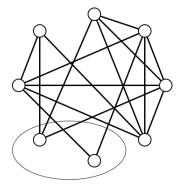
[Kleitman, Winston '82]

An Initial Graph Container Lemma

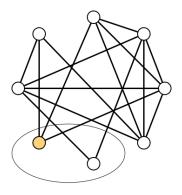
Lemma. Let G = (V, E) be ϵ -far from ρ -INDEPSET. Then, there exists a collection $\mathscr{C} \subseteq P(V)$ of containers that satisfies:

- 1. for every independent set I, there exists $C \in \mathcal{C}$ with $I \subseteq C$,
- 2. for every $C \in \mathscr{C}, |C| \lesssim \left(\rho \frac{\epsilon}{\rho}\right) n$, and
- 3. $|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$.

[Kleitman, Winston '82]

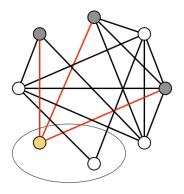


How can I give you the most information about an independent set *I* by just telling you about one of the vertices in *I*?



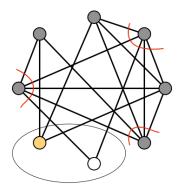
How can I give you the most information about an independent set *I* by just telling you about one of the vertices in *I*?

Answer: Send the vertex $v \in I$ with highest degree.



How can I give you the most information about an independent set I by just telling you about one of the vertices in I?

Answer: Send the vertex $v \in I$ with highest degree.

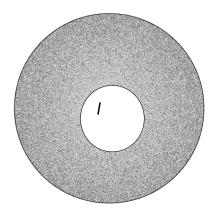


How can I give you the most information about an independent set I by just telling you about one of the vertices in I?

Answer: Send the vertex $v \in I$ with highest degree.

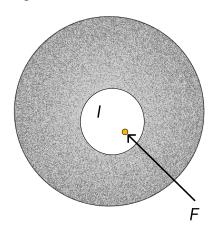
Input: Graph G and an independent set I

- ▶ Initialize fingerprint $F = \emptyset$ and container C = V
- ▶ Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C.



Input: Graph G and an independent set I

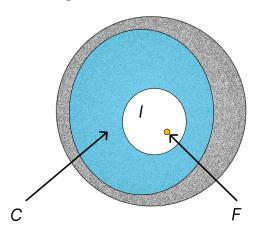
- ▶ Initialize fingerprint $F = \emptyset$ and container C = V
- ▶ Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C.



1st Iteration

Input: Graph G and an independent set I

- ▶ Initialize fingerprint $F = \emptyset$ and container C = V
- ▶ Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C.



1st Iteration

Input: Graph G and an independent set I

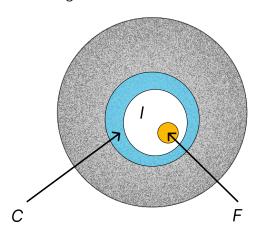
- ▶ Initialize fingerprint $F = \emptyset$ and container C = V
- ▶ Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C.



2nd Iteration

Input: Graph G and an independent set I

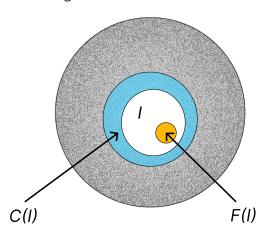
- ▶ Initialize fingerprint $F = \emptyset$ and container C = V
- ▶ Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C.



Final Iteration

Input: Graph G and an independent set I

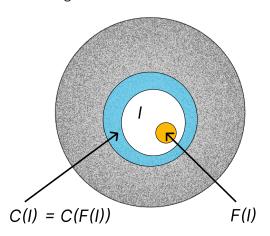
- ▶ Initialize fingerprint $F = \emptyset$ and container C = V
- ▶ Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C.



Final Iteration

Input: Graph G and an independent set I

- ▶ Initialize fingerprint $F = \emptyset$ and container C = V
- ▶ Repeatedly select a vertex $v \in I$ with highest degree in G[C] and add it to F. Remove N(v) and all vertices with higher degree than v from C.



Final Iteration

Lemma. Let G = (V, E) be ϵ -far from ρ -INDEPSET. Then, there exists a collection $\mathscr{C} \subseteq P(V)$ of containers that satisfies:

- 1. for every independent set I, there exists $C \in \mathscr{C}$ with $I \subseteq C$,
- 2. for every $C \in \mathscr{C}$, $|C| \lesssim \left(\rho \frac{\epsilon}{\rho}\right) n$, and
- 3. $|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$.

[Kleitman, Winston '82]

Lemma. Let G = (V, E) be ϵ -far from ρ -INDEPSET. Then, there exists a collection $\mathscr{C} \subseteq P(V)$ of containers that satisfies:

- 1. for every independent set I, there exists $C \in \mathscr{C}$ with $I \subseteq C$,
- 2. for every $C \in \mathscr{C}$, $|C| \lesssim \left(\rho \frac{\epsilon}{\rho}\right) n$, and
- 3. $|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$.

[Kleitman, Winston '82]

Question: How do we construct the *collection* of containers?

Lemma. Let G = (V, E) be ϵ -far from ρ -INDEPSET. Then, there exists a collection $\mathscr{C} \subseteq P(V)$ of containers that satisfies:

- 1. for every independent set I, there exists $C \in \mathscr{C}$ with $I \subseteq C$,
- 2. for every $C \in \mathscr{C}$, $|C| \lesssim \left(\rho \frac{\epsilon}{\rho}\right) n$, and
- 3. $|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$.

[Kleitman, Winston '82]

Question: How do we construct the collection of containers?

Answer:

Let $\mathscr{C} = \{C(I) : I \text{ is an independent set in } G\}$

Lemma. Let G = (V, E) be ϵ -far from ρ -INDEPSET. Then, there exists a collection $\mathscr{C} \subseteq P(V)$ of containers that satisfies:

- 1. for every independent set I, there exists $C \in \mathscr{C}$ with $I \subseteq C$,
- 2. for every $C \in \mathscr{C}, |C| \lesssim \left(\rho \frac{\epsilon}{\rho}\right) n$, and
- 3. $|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$.

[Kleitman, Winston '82]

Question: How do we construct the collection of containers?

Answer:

Let
$$\mathscr{C} = \{C(I) : I \text{ is an independent set in } G\}$$

= $\{C(F(I)) : I \text{ is an independent set in } G\}$

Graph Container Lemma - Restated

Lemma. Let G = (V, E) be ϵ -far from ρ -INDEPSET. Then, there exists a collection $\mathscr{C} \subseteq P(V)$ of containers that satisfies:

- 1. for every independent set I, there exists $C \in \mathscr{C}$ with $I \subseteq C$,
- 2. for every $C \in \mathscr{C}, |C| \lesssim \left(\rho \frac{\epsilon}{\rho}\right) n$, and
- 3. $|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$.

[Kleitman, Winston '82]

Question: How do we construct the collection of containers?

Answer:

```
Let \mathscr{C} = \{C(I) : I \text{ is an independent set in } G\}
= \{C(F(I)) : I \text{ is an indepedent set in } G\}
= \{C(F) : F = F(I) \text{ for some independent set } I \text{ in } G\}
```

Testing Independent Sets

Lemma. Let G be ϵ -far from having a ρn independent set. Then, the collection $\mathscr{F} = \{F(I) : I \text{ is an independent set in } G\}$ satisfies:

Lemma. Let G be ϵ -far from having a ρn independent set. Then, the collection $\mathscr{F} = \{F(I) : I \text{ is an independent set in } G\}$ satisfies:

- 1. for every independent set I in G, there exists $F \in \mathscr{F}$ such that $F \subseteq I \subseteq C(F)$, and
- 2. for every $F \in \mathscr{F}$, $|F| \lesssim \rho^2/\epsilon$ and $|C(F)| \lesssim \left(\rho |F| \cdot \frac{\epsilon}{\rho}\right) n$.

Lemma. Let G be ϵ -far from having a ρn independent set. Then, the collection $\mathscr{F} = \{F(I) : I \text{ is an independent set in } G\}$ satisfies:

- 1. for every independent set I in G, there exists $F \in \mathscr{F}$ such that $F \subseteq I \subseteq C(F)$, and
- 2. for every $F \in \mathscr{F}, \, |F| \lesssim \rho^2/\epsilon$ and $|C(F)| \lesssim \left(\rho \frac{|F|}{\rho} \cdot \frac{\epsilon}{\rho}\right) n$.

Large fingerprints give very small containers.

Lemma. Let G be ϵ -far from having a ρn independent set. Then, the collection $\mathscr{F} = \{F(I) : I \text{ is an independent set in } G\}$ satisfies:

- 1. for every independent set I in G, there exists $F \in \mathscr{F}$ such that $F \subseteq I \subseteq C(F)$, and
- 2. for every $F \in \mathscr{F}, \ |F| \lesssim \rho^2/\epsilon$ and $|C(F)| \lesssim \left(\rho \frac{|F|}{\rho} \cdot \frac{\epsilon}{\rho}\right) n$.

Large fingerprints give very small containers.

For example, at most $\binom{n}{O(1)}$ containers of size roughly $\left(\rho - \frac{\epsilon}{\rho}\right)n$.

Theorem. $S_{\rho\text{-INDEPSET}}(n,\epsilon) = \widetilde{O}(\rho^3/\epsilon^2)$.

Theorem.
$$S_{\rho\text{-INDEPSET}}(n, \epsilon) = \widetilde{O}(\rho^3/\epsilon^2)$$
.

Proof: The tester samples a set S of $s=\widetilde{O}(\rho^3/\epsilon^2)$ vertices uniformly at random. It accepts if and only if G[S] contains a ρs -independent set.

- **Easy** case: if G contains ρn independent set.
- ▶ Hard case: if G is ϵ -far from having ρn independent set.

Theorem.
$$S_{\rho\text{-INDEPSET}}(n, \epsilon) = \widetilde{O}(\rho^3/\epsilon^2)$$
.

Proof: The tester samples a set S of $s=\widetilde{O}(\rho^3/\epsilon^2)$ vertices uniformly at random. It accepts if and only if G[S] contains a ρs -independent set.

- **Easy** case: if G contains ρn independent set.
- ▶ Hard case: if G is ϵ -far from having ρn independent set.
 - Union bound over the set of fingerprints/containers.

Theorem.
$$S_{\rho\text{-INDEPSET}}(n, \epsilon) = \widetilde{O}(\rho^3/\epsilon^2)$$
.

Proof: The tester samples a set S of $s=\widetilde{O}(\rho^3/\epsilon^2)$ vertices uniformly at random. It accepts if and only if G[S] contains a ρs -independent set.

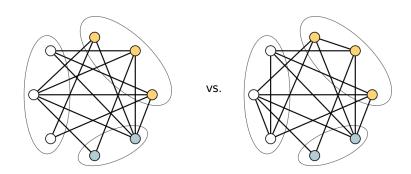
- **Easy** case: if G contains ρn independent set.
- ▶ Hard case: if G is ϵ -far from having ρn independent set.
 - Union bound over the set of fingerprints/containers.

 $\Pr[S \text{ contains } \rho s \text{ independent set}]$

- $\leq \sum_{F \in \mathscr{F}} \mathsf{Pr}[S \text{ contains a } \rho s \text{ independent set with fingerprint } F]$
- $\leq \sum_{F \in \mathscr{F}} \Pr[S \text{ contains } F \text{ and at least } \rho s \text{ vertices from } C(F)].$

Testing Colorability

Testing *k*-Colorability



Goal: Distinguish between

- (i) G is k-colorable, and
- (ii) G is ϵ -far from being k-colorable.

Results: Testing k-Colorability

Prior Results. The sample complexity $S_{k\text{-Color}}(n, \epsilon)$ for testing k-colorability is bounded above by:

 $ightharpoonup O(k^2/\epsilon^3)$

[Goldreich, Goldwasser, Ron '98]

 $ightharpoonup O(k/\epsilon^2)$

[Alon, Krivelevich '02]

 \triangleright $O(k^4/\epsilon)$

[Sohler '12]

and it is bounded below by

 $ightharpoonup \widetilde{\Omega}(1/\epsilon)$

[Alon, Krivelevich '02]

Results: Testing k-Colorability

Prior Results. The sample complexity $S_{k\text{-Color}}(n, \epsilon)$ for testing k-colorability is bounded above by:

 $ightharpoonup O(k^2/\epsilon^3)$

[Goldreich, Goldwasser, Ron '98]

 $ightharpoonup O(k/\epsilon^2)$

[Alon, Krivelevich '02]

 $ightharpoonup O(k^4/\epsilon)$

[Sohler '12]

and it is bounded below by

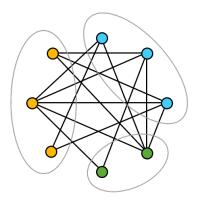
$$ightharpoonup \widetilde{\Omega}(1/\epsilon)$$

[Alon, Krivelevich '02]

Theorem. $S_{k\text{-Color}}(n,\epsilon) = \widetilde{O}(k/\epsilon)$.

Container Method for k-Colorability

Any k-colorable subgraph can be partitioned into k disjoint independent sets.



Run container procedure on each independent set, and take the union of the containers.

New graph container lemmas can be used to show:

$$\triangleright \ \mathcal{S}_{\rho\text{-INDEPSET}}(n,\epsilon) = \widetilde{\Theta}(\rho^3/\epsilon^2)$$

$$ightharpoonup \mathcal{S}_{k ext{-}\mathrm{Color}}(n,\epsilon) = \widetilde{O}(k/\epsilon)$$

New graph container lemmas can be used to show:

- $\triangleright \ \mathcal{S}_{\rho\text{-INDEPSET}}(n,\epsilon) = \widetilde{\Theta}(\rho^3/\epsilon^2)$
- $\triangleright \, \mathcal{S}_{k\text{-Color}}(n,\epsilon) = \widetilde{O}(k/\epsilon)$
- New sample complexity bound of $\widetilde{O}(kq^3/\epsilon)$ for satisfiability testing and new query complexity bound of $o((\rho^3/\epsilon^2)^2)$ for independent set testing.

[Blais, Seth, to appear at STOC '24]

New graph container lemmas can be used to show:

- $\triangleright \ \mathcal{S}_{\rho\text{-INDEPSET}}(n,\epsilon) = \widetilde{\Theta}(\rho^3/\epsilon^2)$
- $\triangleright \mathcal{S}_{k\text{-Color}}(n,\epsilon) = \widetilde{O}(k/\epsilon)$
- New sample complexity bound of $\widetilde{O}(kq^3/\epsilon)$ for satisfiability testing and new query complexity bound of $o((\rho^3/\epsilon^2)^2)$ for independent set testing.

[Blais, Seth, to appear at STOC '24]

What else can the graph container method give for property testing/sublinear algorithms?

New graph container lemmas can be used to show:

- $\triangleright \ \mathcal{S}_{\rho\text{-INDEPSET}}(n,\epsilon) = \widetilde{\Theta}(\rho^3/\epsilon^2)$
- $\triangleright \, \mathcal{S}_{k\text{-Color}}(n,\epsilon) = \widetilde{O}(k/\epsilon)$
- New sample complexity bound of $\widetilde{O}(kq^3/\epsilon)$ for satisfiability testing and new query complexity bound of $o((\rho^3/\epsilon^2)^2)$ for independent set testing.

[Blais, Seth, to appear at STOC '24]

What else can the graph container method give for property testing/sublinear algorithms?

Thank you!