Property Testing and the Container Method

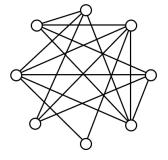
Eric Blais Cameron Seth

June 2024

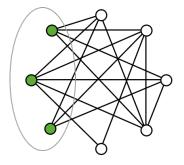
Outline

- 1. What is the Container Method?
- 2. How to use Container Method to analyze property testers.
- 3. New container lemmas for new property testing results.

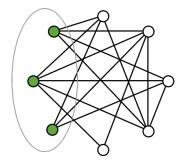
Answer: a tool for characterizing independent sets in some graphs.



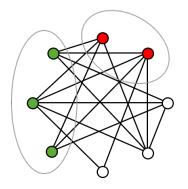
Answer: a tool for characterizing independent sets in some graphs.



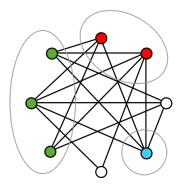
Answer: a tool for characterizing independent sets in some graphs.



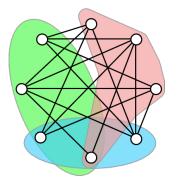
Answer: a tool for characterizing independent sets in some graphs.



Answer: a tool for characterizing independent sets in some graphs.



Answer: a tool for characterizing independent sets in some graphs.



An Initial Graph Container Lemma

An Initial Graph Container Lemma

Lemma. For any ϵ, ρ , let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a collection $\mathscr{C} \subseteq P(V)$ of containers that satisfies:

- 1. for every independent set I, there exists $C \in \mathscr{C}$ with $I \subseteq C$,
- 2. for every $C \in \mathscr{C}, \, |C| \lesssim (1 \frac{\epsilon}{\rho^2}) \rho n,$ and
- 3. $|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$. [Kleitman, Winston '82]

An Initial Graph Container Lemma

Lemma. For any ϵ, ρ , let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a collection $\mathscr{C} \subseteq P(V)$ of containers that satisfies:

- 1. for every independent set I, there exists $C \in \mathscr{C}$ with $I \subseteq C$,
- 2. for every $C \in \mathscr{C}, |C| \lesssim (1 \frac{\epsilon}{\rho^2})\rho n$, and
- 3. $|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$. [Kleitman, Winston '82]

Examples:

- Random graphs
- ▶ d-regular graphs
- **Proof** graphs that are ϵ -far from having a ρn independent set

An Initial Graph Container Lemma¹

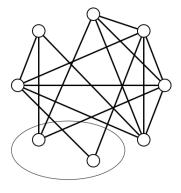
Lemma. For any ϵ, ρ , let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a collection $\mathscr{C} \subseteq P(V)$ of containers that satisfies:

- 1. for every independent set I, there exists $C \in \mathscr{C}$ with $I \subseteq C$,
- 2. for every $C \in \mathscr{C}, |C| \lesssim (1 \frac{\epsilon}{\rho^2})\rho n$, and
- 3. $|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$. [Kleitman, Winston '82]

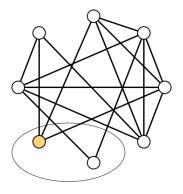
Examples:

- ► Random graphs
- ▶ d-regular graphs
- lacktriangle graphs that are ϵ -far from having a ρn independent set

¹For survey of combinatorial applications see "Counting Indepedent Sets in Graphs" by Samotij or "The method of hypergraph containers" by Balogh, Morris, and Samotij.

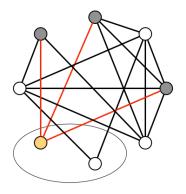


How can I give you the most information about an independent set *I* by just telling you about one of the vertices in *I*?



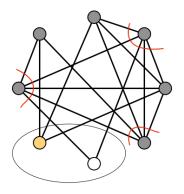
How can I give you the most information about an independent set *I* by just telling you about one of the vertices in *I*?

Answer: Send the vertex $v \in I$ with highest degree.



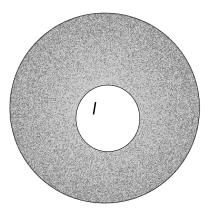
How can I give you the most information about an independent set *I* by just telling you about one of the vertices in *I*?

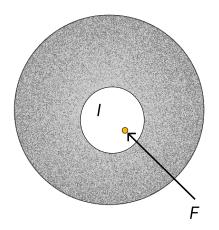
Answer: Send the vertex $v \in I$ with highest degree.



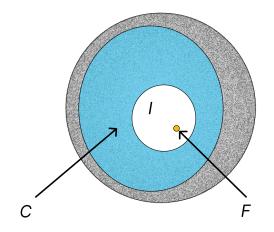
How can I give you the most information about an independent set *I* by just telling you about one of the vertices in *I*?

Answer: Send the vertex $v \in I$ with highest degree.

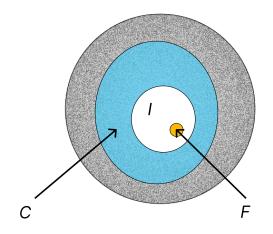




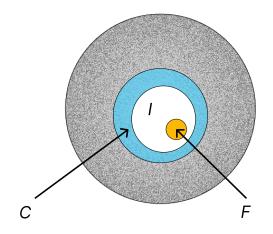
1st Iteration



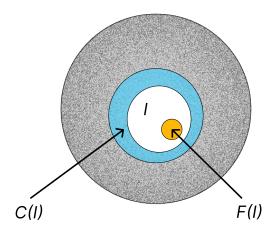
1st Iteration



2nd Iteration

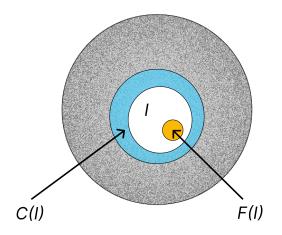


Final Iteration



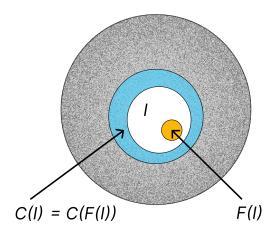
Final Iteration

Input: Graph G and an independent set I **Output:** Container C(I) and Fingerprint F(I)



Key Observation: C(I) can be constructed from F(I).

Input: Graph G and an independent set I **Output:** Container C(I) and Fingerprint F(I)



Key Observation: C(I) can be constructed from F(I).

Lemma. For any ϵ, ρ , let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a collection $\mathscr{C} \subseteq P(V)$ of containers that satisfies:

- 1. for every independent set I, there exists $C \in \mathscr{C}$ with $I \subseteq C$,
- 2. for every $C \in \mathscr{C}, |C| \lesssim (1 \frac{\epsilon}{\rho^2})\rho n$, and
- 3. $|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$.

[Kleitman, Winston '82]

Lemma. For any ϵ, ρ , let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a collection $\mathscr{C} \subseteq P(V)$ of containers that satisfies:

- 1. for every independent set I, there exists $C \in \mathcal{C}$ with $I \subseteq C$,
- 2. for every $C \in \mathscr{C}, |C| \lesssim (1 \frac{\epsilon}{\rho^2})\rho n$, and
- 3. $|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$.

[Kleitman, Winston '82]

Question: How do we construct the *collection* of containers?

Lemma. For any ϵ, ρ , let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a collection $\mathscr{C} \subseteq P(V)$ of containers that satisfies:

- 1. for every independent set I, there exists $C \in \mathscr{C}$ with $I \subseteq C$,
- 2. for every $C \in \mathscr{C}, |C| \lesssim (1 \frac{\epsilon}{\rho^2})\rho n$, and
- 3. $|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$.

[Kleitman, Winston '82]

Question: How do we construct the *collection* of containers?

Answer:

Let
$$\mathscr{C} = \{C(I) : I \text{ is an independent set in } G\}$$

Lemma. For any ϵ, ρ , let G = (V, E) be a graph such that every induced subgraph on ρn vertices has at least ϵn^2 edges. Then, there exists a collection $\mathscr{C} \subseteq P(V)$ of containers that satisfies:

- 1. for every independent set I, there exists $C \in \mathscr{C}$ with $I \subseteq C$,
- 2. for every $C \in \mathscr{C}, \, |C| \lesssim (1 \frac{\epsilon}{\rho^2}) \rho n,$ and
- 3. $|\mathscr{C}| \lesssim \binom{n}{1/\epsilon}$.

[Kleitman, Winston '82]

Question: How do we construct the *collection* of containers?

Answer:

Let
$$\mathcal{C} = \{C(I) : I \text{ is an independent set in } G\}$$

= $\{C(F) : F = F(I) \text{ for some independent set } I \text{ in } G\}$

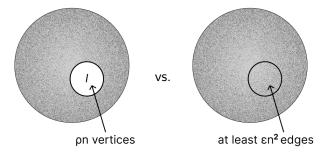
How to use the Container Method to

Analyze Property Testers

Graph Property Testing - Example

Testing Independent Sets: Distinguish between the cases:

- (i) G has a ρn independent set, and
- (ii) every ρn -induced subgraph in G has at least ϵn^2 edges (ϵ -far).

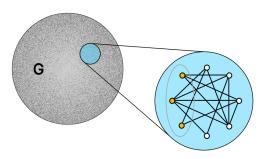


by inspecting a small fraction of G.

[Goldreich, Goldwasser, Ron '98]

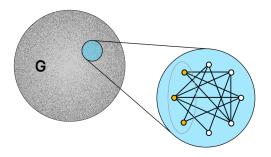
A Simple Tester for Independent Set Property

Testing Algorithm: Take a random sample S of s vertices, check if the induced subgraph G[S] has a ρs independent set (for some small s, which we call the sample complexity).



A Simple Tester for Independent Set Property

Testing Algorithm: Take a random sample S of s vertices, check if the induced subgraph G[S] has a ρs independent set (for some small s, which we call the sample complexity).



Key Challenge: If G is ϵ -far from having a ρn independent set, show that a random induced subgraph on s vertices has a ρs independent set with only small probability.

Application of Container Lemma

Key Challenge: If G is ϵ -far from having a ρn independent set, show that a random induced subgraph on s vertices has a ρs independent set with only small probability.

Application of Container Lemma

Key Challenge: If G is ϵ -far from having a ρn independent set, show that a random induced subgraph on s vertices has a ρs independent set with only small probability.

Use Container Lemma:

- Any independent set is contained in a container.
- Since each container is small, can upper bound the probability of getting ρs vertices from a specific container.

Application of Container Lemma

Key Challenge: If G is ϵ -far from having a ρn independent set, show that a random induced subgraph on s vertices has a ρs independent set with only small probability.

Use Container Lemma:

- Any independent set is contained in a container.
- Since each container is small, can upper bound the probability of getting ρs vertices from a specific container.
- ► Take union bound over all containers.

New Container Lemmas and Property Testing Results

Prior Testing Results using the Container Method

Theorem:

There is an ϵ -tester for ρ -INDEPSET that only inspects a random induced subgraph on $\widetilde{O}(\rho^3/\epsilon^2)$ vertices.

There is an ϵ -tester for k-Color that only inspects a random induced subgraph on $\widetilde{O}(k/\epsilon)$ vertices.

[Blais, Seth FOCS '23]

Prior Testing Results using the Container Method

Theorem:

There is an ϵ -tester for ρ -INDEPSET that only inspects a random induced subgraph on $\widetilde{O}(\rho^3/\epsilon^2)$ vertices.

There is an ϵ -tester for k-Color that only inspects a random induced subgraph on $\widetilde{O}(k/\epsilon)$ vertices.

[Blais, Seth FOCS '23]

- Both results use new graph container lemmas.
- ▶ Both results improve on the prior known bounds, and the tester for ρ -INDEPSET nearly matches the best lower bound by Feige, Langberg, Schechtman ('04).

Prior Testing Results using the Container Method

Theorem:

There is an ϵ -tester for ρ -INDEPSET that only inspects a random induced subgraph on $\widetilde{O}(\rho^3/\epsilon^2)$ vertices.

There is an ϵ -tester for k-Color that only inspects a random induced subgraph on $\widetilde{O}(k/\epsilon)$ vertices.

[Blais, Seth FOCS '23]

- ▶ Both results use new graph container lemmas.
- ▶ Both results improve on the prior known bounds, and the tester for ρ -INDEPSET nearly matches the best lower bound by Feige, Langberg, Schechtman ('04).

Question: What else can the container method give in testing?

Result 1: Satisfiability Testing

Definition: An instance ϕ of (q, k)-SAT is a constraint satisfaction problem with q variables per constraint and alphabet size k.

 ϕ is ϵ -far from satisfiable if at least $\epsilon\binom{n}{q}$ constraints must be removed to make ϕ satisfiable.

Result 1: Satisfiability Testing

Definition: An instance ϕ of (q, k)-SAT is a constraint satisfaction problem with q variables per constraint and alphabet size k.

 ϕ is ϵ -far from satisfiable if at least $\epsilon\binom{n}{q}$ constraints must be removed to make ϕ satisfiable.

Theorem 1: There is an ϵ -tester for (q, k)-SAT with sample complexity $\widetilde{O}(kq^3/\epsilon)$.

- ▶ Improving on prior bounds of $2^{k^{2q}}/\epsilon^2$ [Alon, Shapira '03] and k^{3q}/ϵ [Sohler '12].
- Via new hypergraph container lemma.

Corollaries of Result 1

Theorem 1: There is an ϵ -tester for (q, k)-SAT with sample complexity $\widetilde{O}(kq^3/\epsilon)$.

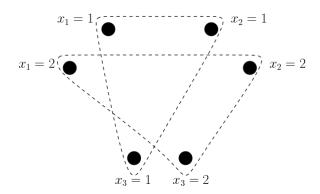
Corollaries:

- ▶ new bound for ϵ -testing k-colorability on q-uniform hypergraphs.
- ▶ new bound for ϵ -testing any 0-1 graph partition property.

Hypergraph Encoding for Satisfiability

Idea: Encode (q, k)-SAT instance ϕ as a hypergraph H_{ϕ} . The vertex set is all possible single variable assignments. Edges correspond to falsified constraints.

Example: Two hyperedges formed by the constraint that variables x_1, x_2, x_3 must not all be equal.



New Hypergraph Container Lemma for Satisfiability

Lemma (informal). Let ϕ be an instance of (q, k)-SAT. If ϕ is ϵ -far from satisfiable then there exists a collection of containers $\mathscr{C} \subseteq P(V(H_{\phi}))$ that satisfies:

New Hypergraph Container Lemma for Satisfiability

Lemma (informal). Let ϕ be an instance of (q, k)-SAT. If ϕ is ϵ -far from satisfiable then there exists a collection of containers $\mathscr{C} \subseteq P(V(H_{\phi}))$ that satisfies:

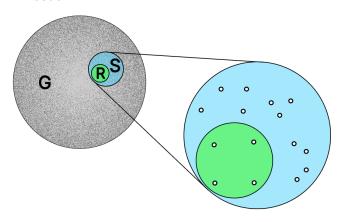
- 1. for every independent set I in H_{ϕ} , there exists $C \in \mathscr{C}$ such that $I \subseteq C$,
- 2. each $C \in \mathscr{C}$ is small, and
- 3. $|\mathscr{C}|$ is small.

Result 2: Query Complexity of Independent Set Testing

Theorem 2: There is an ϵ -tester for ρ -INDEPSET with query complexity $\widetilde{O}(\rho^5/\epsilon^{7/2})$.

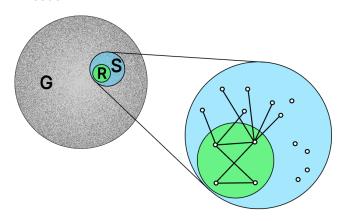
- Demonstrates gap between query complexity of optimal sample based tester of $\widetilde{O}(\rho^6/\epsilon^4)$ by Blais, Seth ('23).
- Via new graph container lemma for an object we call independent set stars.

The New Tester



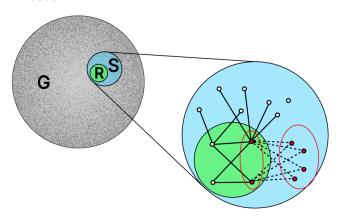
▶ Take vertex sample S and smaller sample $R \subset S$.

The New Tester



- ▶ Take vertex sample S and smaller sample $R \subset S$.
- ightharpoonup Query all edges in R, and all edges between R and S.

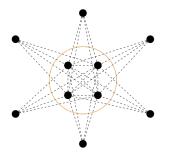
The New Tester



- ▶ Take vertex sample S and smaller sample $R \subset S$.
- ightharpoonup Query all edges in R, and all edges between R and S.
- Accept if and only if R contains a $\rho|R|$ independent set I and S contains a $\rho|S|$ set J such that E(I,J)=0.

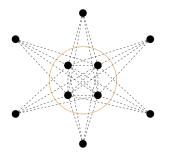
Independent Set Stars and New Container Lemma

Definition: Let G = (V, E) be a graph. A pair of subsets (I, J) of V form an independent set star if I is an independent set and |E(I, J)| = 0.



Independent Set Stars and New Container Lemma

Definition: Let G = (V, E) be a graph. A pair of subsets (I, J) of V form an independent set star if I is an independent set and |E(I, J)| = 0.



Lemma (informal). Let G be ϵ -far from having a ρn independent set. Then, there exists a collection of containers that cover all independent set stars.

Summary: Property Testing and the Container Method

New graph and hypergraph container lemmas can be used to show:

- ightharpoonup ϵ -tester for ho-INDEPSET with sample complexity $\widetilde{\Theta}(
 ho^3/\epsilon^2)$
- ullet ϵ -tester for k-Color with sample complexity $O(k/\epsilon)$ [Blais, Seth '23]
- lacktriangledown ϵ -tester for (q,k)-SAT with sample complexity $\widetilde{O}(kq^3/\epsilon)$
- ullet ϵ -tester for ho-INDEPSET with query complexity $\widetilde{O}(
 ho^5/\epsilon^{7/2})$ [this work]

Summary: Property Testing and the Container Method

New graph and hypergraph container lemmas can be used to show:

- ightharpoonup ϵ -tester for ho-INDEPSET with sample complexity $\widetilde{\Theta}(
 ho^3/\epsilon^2)$
- ullet ϵ -tester for k-Color with sample complexity $O(k/\epsilon)$ [Blais, Seth '23]
- lacktriangledown ϵ -tester for (q,k)-SAT with sample complexity $\widetilde{O}(kq^3/\epsilon)$
- ullet ϵ -tester for ho-INDEPSET with query complexity $\widetilde{O}(
 ho^5/\epsilon^{7/2})$ [this work]

Thank you!

Summary: Property Testing and the Container Method

New graph and hypergraph container lemmas can be used to show:

- ightharpoonup ϵ -tester for ho-INDEPSET with sample complexity $\widetilde{\Theta}(
 ho^3/\epsilon^2)$
- ullet ϵ -tester for k-Color with sample complexity $O(k/\epsilon)$ [Blais, Seth '23]
- lacktriangledown ϵ -tester for (q,k)-SAT with sample complexity $\widetilde{O}(kq^3/\epsilon)$
- ullet ϵ -tester for ho-INDEPSET with query complexity $\widetilde{O}(
 ho^5/\epsilon^{7/2})$ [this work]

Thank you!