A Goal-Directed Multi-Level Stylistic Analyzer

Pat Hoyt and Chrysanne DiMarco*
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

cdimarco@logos.uwaterloo.ca

Abstract

Sophisticated natural language pro-
cessing systems should be able to deal
with the subtle but significant ef-
fects of style on communication, but
the difficulties of representing stylis-
tic knowledge in a formal represen-
tation had resulted in only simplis-
tic and heuristic approaches to imple-
mentation.

In this paper, we take the problem of
formally representing stylistic knowl-
edge as our starting point. It is our
belief that stylistic knowledge must
first be formalized, rendered in a well-
defined representation, before a com-
putational analysis of style can be at-
tempted. And it is our further con-
tention that a formal representation
will facilitate a very transparent im-
plementation. We show how a for-
mal representation of syntactic style
can be used as the basis for a general-
purpose stylistic analyzer that can
produce descriptions of the stylistic
features of an input sentence at mul-
tiple levels of abstraction.

1 The importance of stylistic analysis
in natural language processing

The importance of dealing with pragmatic aspects of lan-
guage in computational systems is undeniable. People
communicate a great deal of information through prag-
matic nuances, and a knowledge of how these subtleties
influence meaning is part of a full understanding of lan-
guage. Systems that could analyze the effects of style
on communication would provide information about the
implicit meaning that is contained in a text. And gen-
eration systems that could control style would produce
text that intentionally conveys a specific pragmatic ef-
fect. Both stylistic analysis and generation could be used

*Please direct all correspondence to the second author.

in applications, such as text critiquing, second-language
instruction, and machine translation, for which under-
standing the effects of how something is said is as im-
portant as understanding what is said. Ultimately, com-
putational stylistics should be a part of any system that
attempts to deal with ‘real-world’ language.

But very few natural language understanding systems
have attempted to deal with issues of style,® and those
that do have generally taken a simplistic and heuristic
approach. Stylistic analysis has not yet developed the
systematic and rigorous methods of syntactic analysis
and semantic interpretation. Part of the reason is ob-
vious: understanding style is hard. Stylistic effects are
difficult to articulate and even more difficult to define.

In this paper, we take the problem of formally repre-
senting stylistic knowledge as our starting point. It is
our belief that stylistic knowledge must first be formal-
ized, rendered in a well-defined representation, before a
computational analysis of style can be attempted. And
it is our further contention that a formal representation
will facilitate a very transparent implementation. We
show how a formal representation of syntactic style can
be used as the basis for a general-purpose stylistic an-
alyzer that could be used as a component of a natural
language processing system.

2 A theory of syntactic style

A formal representation of stylistic knowledge should
ideally be based on an underlying linguistic theory: there
should be a vocabulary of concepts, a clear definition
of how the concepts are related, and a systematic way
for building new concepts out of existing ones. In our
earlier work [DiMarco and Hirst 1993; Green 1992], we
presented a computational theory of syntactic style that
is a multi-level representation of stylistic grammar rules.
This section summarizes the details of this work as pre-
sented in [DiMarco and Hirst 1993]. Green [1992] de-
velops the linguistic underpinnings of the theory; Hoyt
[1993] presents the representation of the complete theory
in a syntactic stylistic grammar.

!By style, we do not mean literary style, but rather the
style of texts such as high-quality magazines and newspapers,
technical manuals, and business correspondence.

2.1 Fundamental concepts

In designing a computational theory of style, we con-
structed a vocabulary of stylistic concepts at three levels
of abstraction:

e Primitive elements are stylistically significant
syntactic properties of sentence components.

e Abstract elements are general stylistic proper-
ties of groups of sentences.

e Stylistic goals are the writer’s intentions for
high-level pragmatic properties of text.

At all levels, the guiding principle of the theory is that
style is goal-directed, that is, linguistic choices are made
to achieve specific stylistic goals, such as clarity or ab-
straction. Therefore, we tie low-level syntactic choices
to high-level stylistic goals. The fundamental concepts
that are used to integrate the multiple levels of the the-
ory are stylistic concord and discord, which we define as
follows:

Concord: A stylistic construction that conforms to the
norm for a given genre.

Discord: A stylistic construction that deviates from the

IIOI‘I'II.2

2.2 Primitive elements of style

At the lowest level of the theory, there are two views of
sentence structure, connective and hierarchic:®

Connective ordering: The result of cohesive bonds
drawing together components in a linear order-
ing.

Hierarchic ordering: The result of bonds of subordi-
nation and superordination drawing together
components in a nested ordering.

The connective and hierarchic orderings are used in the
definition of primitive stylistic elements to provide a pre-
cise syntactic basis to the theory, yet also allow a map-
ping to the abstract elements.

We use the terms conjunct and antijunct with su-
perscripts to indicate the degree of connectivity or dis-
connectivity. Syntactic components are classified as ei-
ther conjunct® or conjunct® (excessively connective),
conjunct? or conjunct* (strongly connective), conjunct?
(moderately connective), conjunct! (mildly connective),
and conjunct’? (neutral). Similarly, the terms antijunct’
through antijunct4 are used to indicate increasingly dis-
connective effects; conjunct’ and antijunct’ are the
same.

There is a complementary vocabulary of primi-
tive elements for the hierarchic view. The stylis-
tic effects of syntactic components are correlated
with the degree of subordination or superordination;
the classifications are analogous to the connective:
subjunct4 through subjunct® (decreasingly subordinate)

2Discord, in our view, is not necessarily ‘bad’. Indeed, it
is the strategic use of discord, deviation from the norm, that
can give expressiveness to writing.

3These two complementary kinds of analysis are implicit
in the work of most stylists and rhetoricians.

and superjunct® through superjunct4 (increasingly su-
perordinate); subjunct® and superjunct’ are the same.

We adapted the work of Halliday and Hasan [1976]
on cohesive relations to assign classifications to the con-
nective elements. Halliday and Hasan consider substi-
tution, including ellipsis, to be the most strictly co-
hesive relation, followed by reference, and then con-
Junction. We adopted this ranking, and so we clas-
sify intrasentential substitution and ellipsis as strongly
connective (conjunct?), reference as moderately connec-
tive (conjunct?), and conjunction as mildly connective
(conjunct!). We also classify interpolation, parentheti-
cal constructions, as disconnective (antijunct?).

In assigning a hierarchic classification to a syntactic
component, we adapted Halliday’s [1985] work on subor-
dination, specifically, embedding and hypotaxis, and the
definition of the term superordination by Quirk et al.
[1985]. We classify embeddings as strongly subordinate,
subjunct?, and hypotactic structures as only mildly sub-
ordinate, subjunct!.

2.3 Abstract elements of style

The primitive elements of style are combined into pat-
terns of abstract elements that describe general stylis-
tic properties related to syntactic parallelism, structure
nesting, and linear ordering. The abstract elements are
defined as follows:

Homopoise: A sentence with interclausal coordination
of syntactically similar components.

Heteropoise: A sentence in which one or more par-
enthetical components are syntactically ‘de-
tached’ and dissimilar from the other compo-
nents at the same level in the parse tree.*

Monoschematic: A sentence with a single main clause
with simple phrasal subordination and no ac-
companying subordinate or coordinate clauses.

Centroschematic: A sentence with a central, domi-
nant clause with one or more of the following
optional features: complex phrasal subordina-
tion, initial dependent clauses, terminal depen-
dent clauses.

Polyschematic: A sentence with more than one cen-
tral, dominant clause and at least one depen-
dent clause.

Resolution: A shift in stylistic effect that occurs at the
end of a sentence and is a move from a relative
discord to a stylistic concord.

Dissolution: A shift in stylistic effect that occurs at the
end of a sentence and is a move from a relative
concord to a stylistic discord.

The remaining abstract elements describe concordant or
discordant stylistic effects in particular positions. The
basic elements are ¢nitial concord, medial concord, and
final concord, with a similar range of discord elements.

* A heteropoise can be initial, medial, or final, depending
on the position of the parenthesis in the sentence.

2.4 Stylistic goals

As we have noted, the abstract elements are defined in
terms of the lower-level primitive elements. The abstract
elements are in turn used as the basis for the definition
of higher-level stylistic goals. Stylistic goals can be or-
ganized along orthogonal dimensions. For example, a
writer might try to be clear, or obscure, or make no ef-
fort either way. Clarity and obscurity are thus opposite
ends of a stylistic dimension. Likewise, the goals of con-
creteness and abstraction form a dimension, and so do
staticness and dynamism.

We adapted descriptions of stylistic goals from text-
books of style, such as [Kane 1983], and rewrote these
descriptions in terms of our abstract elements. Clarity,
for example, is characterized by simple monoschematic
sentences, centred centroschematic sentences, and par-
allel homopoisal sentences. Concreteness is associated
with sentences that highlight a particular component:
these are our heteropoises and discords. And staticness
is characteristic of ‘fized-form’ sentences in which there
is little stylistic variation, that is, monoschematic or ho-
mopoisal sentences.

3 A stratified grammar of style

3.1 The style of the grammar

Our theory of syntactic style is now the basis for a gram-
mar of style, which in turn will provide a specification
for our stylistic analyzer. The hierarchical nature of the
theory lends itself naturally to a stratified, context-free
grammar. It is useful to think of the grammar as a means
of recognizing a particular style tree, analogous to a syn-
tactic parse tree. Just as a syntax tree is built up from
individual words at the leaf nodes to a whole sentence
at the root level, a style tree can be thought of as be-
ing built up from primitive elements at the leaf level to
stylistic goals at the root. The syntax-tree analogy can
be extended: we can consider the syntax-tree nodes to be
annotated with stylistic terms, starting with the leaves
and working up through the intermediate nodes to the
root node.

To illustrate the structure of the grammar, we will
present selected rules that build from simple syntactic
components to full sentences.®

3.2 Level of primitive elements
3.2.1

In the development of our theory of style, we were es-
pecially concerned with the relationship between style
and the structure of the nominal group. As a conse-
quence, a large number of the rules in our grammar
involve definitions of premodification and postmodifica-
tion. These definitions are built up from adjectivals,

Basic components

®The rules are taken from Hoyt’s [1993] full syntactic
stylistic grammar of 240 rules, which is a revised and ex-
tended version of the preliminary grammar presented in [Di-
Marco and Hirst 1993]. The notation used in the grammar
is explained in the Appendix to this paper.

nouns, prepositional phrases, etc. One of the connec-
tive rules for postmodification defines conjunct! post-
modification, which deals with the case of a prepositional
phrase, a conjunctive element. In the hierarchic view, a
prepositional phrase is classified as subjunct® postmod-
ification, as it is an embedded element.

conjunct! postmodification —

prepositional phrase

subjunct® postmodification —
prepositional phrase

We introduce the notion of a transitional level in the
grammar, in order to clearly separate the levels of primi-
tive elements and abstract elements. At this level, prim-
itive elements are combined into transitional elements,
which directly indicate the abstract elements of which
they can be a part. For example, the rules below de-
fine the kinds of postmodification that can be used in
building a monoschematic, centroschematic, or concor-
dant sentence.

monoschematic postmodification —
subjunct® postmodification

subjunct® postmodification and
(nominal group or prepositional phrase)

centroschematic postmodification —
conjunct® postmodification where 0< i <4

subjunct? postmodification where 0< i <3

concordant postmodification —
conjunct® postmodification where 0< i <4

subjunct? postmodification where 0< i <3

3.2.2 Noun phrases

The various types of premodification and postmodifi-
cation are combined into different kinds of noun phrases.
In the examples below, we define the kinds of noun
phrases that can be incorporated into monoschematic,
centroschematic, and concordant sentences.

monoschematic noun phrase —

noun phrase with
(monoschematic premodification and
monoschematic postmodification)

centroschematic noun phrase —

noun phrase with
(centroschematic premodification and
centroschematic postmodification)

concordant noun phrase —

noun phrase with
(concordant premodification and
concordant postmodification)

3.2.8 Main clauses

In an analogous manner, the rules for the other ma-
jor sentence components (prepositional phrases, comple-
ments, verb phrases, and dependent clauses) are built up
from primitive elements to form transitional elements.
The various types of majors, or main clauses, can then
be defined from component transitional elements, as in
the following examples.

monoschematic major —

major with
(monoschematic noun phrase and
monoschematic verb phrase)

centroschematic major —

major with
(centroschematic noun phrase and
centroschematic verb phrase)

concordant major —

major with
(concordant noun phrase and
concordant verb phrase)

3.2.4 Complete sentences

Finally, we define rules for complete sentences, which
consist of at least one main clause, with optional depen-
dent clauses. Selected rules are as follows:

monoschematic complete —

monoschematic major

centroschematic complete —

(concordant clause)* centroschematic major
(concordant clause)*

concordant complete —

(concordant clause)* concordant major
(concordant clause)*

initial concordant complete —
concordant major (clause)*
(concordant clause)* major (clause)*
3.3 Levels of abstract elements and stylistic
goals

At the level of abstract elements, the various types of
complete sentences are used to define stylistic terms
such as monoschematic, centroschematic, and initial con-
cord:

monoschematic —

monoschematic complete

centroschematic —

centroschematic complete

initial concord —
initial concordant complete

Finally, at the top level, the abstract elements are used
to define stylistic goals. For example, as we described in
section 2.4, clarity would be defined by the following
rule:

clarity —
monoschematic
centroschematic

homopoise

3.4 An application of the grammar

The following short example illustrates the kind of anal-
ysis that the stylistic grammar can be used to produce
for the sentence True, posterity has been kind.®

3.4.1 Primitive-element analysis

The sentence is concordant, for it consists of a con-
cordant main clause, the major, with no subordinate
clauses. It begins with a style disjunct, ¢{rue, which is
an elliptic adjectival and therefore considered to have a
connective, concordant effect, even if used in the initial,
parenthetical, position. After the initial disjunct, the
sentence continues with the bare noun posterity, which,
lacking both premodification and postmodification is a
minimal, and therefore concordant, noun phrase. The
sentence ends with the basic verb phrase has been kind,
consisting of only the copula been, and the concordant,
conjunct! adjective kind; this is an inherently concordant
verb phrase.

The sentence is concordant from the hierarchic view
as well, for it has the form of a concordant initial het-
eropoisal complete sentence. This indicates that the sen-
tence begins with a parenthetical construction, which in
this case is the disjunct, ¢rue, a superordinate adjectival.
The bare noun posterity, lacking both premodification
and postmodification, is a monoschematic noun phrase.
The verb phrase has been kind is basic and therefore
monoschematic.

3.4.2 Abstract-element analysis

In the connective view, the significant elements
are initial and medial concords—the sentence is both
monoschematic and trivially centroschematic. It is also
an initial heteropoise.

In the hierarchic view, the sentence is centroschematic
and an initial heteropoise. It is the initial disjunct, true,
that introduces a superordinate effect; this feature makes
the sentence slightly too complex to be monoschematic.

®The next six paragraphs have been adapted from [Di-
Marco and Hirst 1993].

3.4.3 Stylistic-goal analysis

The presence of the concords in the connective
view, together with the connective and hierarchic cen-
troschematic structures, give the sentence an effect of
clarity. In a less obvious manner, the presence of an
initial disjunct affects other stylistic goals. Because a
superordinate, parenthetical, component is present, the
sentence is a heteropoise and therefore considered to be
concrete.

To summarize, this is a simple, clear sentence with the
slight incongruity of an initial parenthesis to relieve its
blandness.

4 A stratified stylistic analyzer
4.1 General design

Our theory of syntactic style is represented by a corre-
sponding set of grammar rules that defines the relation-
ship between syntactic structures and stylistic effects.
Now, we will use this grammar of style as the specifi-
cation for a stylistic analyzer, AsSET, that will produce
stylistic parses of input sentences. In designing ASSET,
we were influenced by the following considerations:

Evaluation of the theory: We viewed ASSET as an
essential tool for testing and evaluating our theory of
style.

Parser independence: A syntax-based stylistic anal-
ysis of a sentence will obviously include a syntactic parse
of the sentence. Thus, an ordinary parser is a nec-
essary part of any stylistic analyzer. Our decision to
make ASSET totally independent of the parser was in
part theoretical —ASSET would not have to compromise
theory because of limitations and/or methodology of
the parser—and pragmatic—developing a parser from
scratch was beyond the scope of our work.

This requirement meant that the sentence must be
parsed before the stylistic analysis. This allows the sub-
stitution of parsers within the system with only the re-
quirement that a module be created to transform the
output of a particular parser into the specified format
for ASSET.

Modularity: Future work on the theory will include
refinements to the abstract elements and transition el-
ements, so the prospect of these revisions made modu-
larity, good software engineering practice in any case, a
necessity.

Efficiency: ASSET must be reasonably efficient.

Independence from potential uses: The potential
applications of a stylistic analyzer include intelligent
computer-assisted language instruction (ICALI) and ma-
chine translation (MT). At the present state of develop-
ment of ICALI and MT, it is impossible to know ex-
actly which information and what representation would
be most useful. This implied that, in addition to let-
ting the user know which stylistic goal(s), if any, have
been met, all stylistic information generated during the
analysis must be part of the output of ASSET.

[[[[[none], complement], [[[runs],
lexical_verb], verb], verb_phrase], [[[[[[[none], postmodifier],
[[[park], lexical noun], noun], [[[[the], definite_article], ad-
jectival], premodifier], nominal group|, [[in], preposition],
prepositional phrase], postmodifier], [[[man], lexical noun],
noun], [[[[the], definite_article], adjectival], premodifier], nom-
inal group], noun_phrase], major], complete]

Figure 1: ASSET’s input in its list-structure form.

The need to have all stylistic information available fur-
ther implied that the analysis of one part of the sentence,
e.g., the noun phrase, cannot constrain that of another,
e.g., the verb phrase. To obtain some degree of effi-
ciency, in spite of the lack of constraints on the analysis,
a bottom-up, or leaf-to-root, approach is used. A syn-
tax tree that parallels the syntactic organization of our
grammar is the basic structure of ASSET. This tree is
represented as a list structure that describes a breadth-
first, right-to-left traversal. Figure 1 shows the list struc-
ture that is the input to ASSET for the simple sentence
The man in the park runs.

The parser used in the development of ASSET is
Pundit” (Prolog UNderstands Integrated Text), chosen
because of its fairly large syntactic coverage and its com-
prehensive treatment of conjunctions. These are neces-
sary features for the analysis of stylistically interesting
sentences. Pundit uses a restrictive grammar, written as
a set of BNF (Backus-Naur Form) rules. Pundit’s out-
put consists of a syntactic tree in this BNF form; it is
this output that is transformed into the parse tree input
into ASSET.

4.2 The representation of the grammar in

ASSET

ASSET’s processing mechanism is data-driven, so that
the grammar rules are represented declaratively in a
database. ASSET is essentially a ‘tree-walker’ that tra-
verses the parse tree, annotating the nodes with stylistic
information. The grammar rules have the form shown in
Figure 2.8

As ASSET walks through the parse tree, it uses the
grammar representation to match the pattern of anno-
tations currently recorded at a node. At each stage,
ASSET ‘knows’ what it needs to look for because of the
consistency in the way the grammar is constructed: The
grammar is stratificational,® so that elements at each
level are composed from elements at the level below. As
a consequence, ASSET need only look at a small set of

"Pundit is a natural language understanding system de-
veloped by the Unisys Corporation.

8In Figures 2 and 6, the abstract-element terms connec-
tive, hierarchic, monoschematic, centroschematic, and con-
cordant have been abbreviated to conn, hier, mono, centro,
and concord respectively. The te affix indicates a transition-
element analysis that is dependent on the corresponding
transition-element analysis of the syntactic component’s (é.e.,
the current node’s) children.

°The stratificational nature of our grammar was influ-
enced by Sydney M. Lamb’s work, in particular, Outline of
stratificational grammar, Georgetown University Press, 1966.

postmodification(conn, prepositional_phrase,
conjunctl).

postmodification(hier, prepositional_phrase,
pp_subjunct3).

postmodification(conn_te, conjunctl,
[centro, concord]).

postmodification(hier_te, pp_subjunct3,
[mono, concord]).

nominal_group (postmodification(concord),
[premodification(concord)], concord).
noun_phrase (nominal_group(centro), [], centro).

major(noun_phrase(concord), [verb_phrase(concord)],
concord) .
complete(major(centro), [1, centro).

abstract_elements(complete(centro), [], centro).
stylistic_goals(abstract_elements(centro), [],
clarity).

Figure 2: Sample ASSET grammar rules

: Transform the parser output into format specified for
AsSET (TRANSFORMATION MODULE).

: Annotate the input tree with primitive element clas-
sifications (ANNOTATION MODULE).

: Assign abstract elements to the input sentence
(ABSTRACT ELEMENT MODULE).

: Assign stylistic goal(s) to the input sentence
(StYLIsTIC GOAL MODULE).

: Output the annotated tree structure.

Figure 3: The general algorithm for ASSET

possible rules at each stage to decide on the next incre-
ment in the annotation of the stylistic parse tree.

4.3 The processing modules

The general algorithm for the ASSET system is shown in
Figure 3, along with an accompanying illustration of its
architecture in Figure 4. The Transformation Module is
responsible for changing Pundit’s output into the form,
as shown in Figure 1, specified for ASSET.

The Annotation Module is responsible for the task of
analyzing the style of the input sentence at the primitive-
element and transition-element levels. The algorithm is
shown in Figure 5. There are two submodules that an-
notate the nodes of the input tree with stylistic informa-
tion:

Primitive Element Module (PEM): This module
is responsible for analyzing the appropriate nodes by us-
ing the primitive-element layer of our computational the-
ory. Each node is analyzed from both the connective and
hierarchical viewpoints. The result of the analysis is a
node annotated with the primitive stylistic descriptions:
either a conjunct or an antijunct element and either a

Parser Output

Transformation Module
(TM)

Annotation Module
(AM)

(AEM)

Stylistic Goal Module
(SGM)

i Abstract Element Module

System Output

Figure 4: The overall architecture of ASSET

1: Annotate ‘near’ leaf nodes with primitive-element
classifications (PRIMITIVE ELEMENT MODULE).

la. Analyze from the connective viewpoint
(CoNNECTIVE MODULE).

1b. Analyze from the hierarchical viewpoint
(HIERARCHICAL MODULE).

2: Annotate the rest of the nodes with transition-
element classifications (TRANSITION ELEMENT MoD-
ULE).

Figure 5: The algorithm for the Annotation Module.

subjunct or a superjunct element.

Transition Element Module (TEM): This mod-
ule takes the parse tree, previously annotated by the
PEM, and annotates the rest of the nodes with abstract-
element terms. The TEM uses information provided by
the primitive-element classification of nodes lower in the
parse tree.

It should be noted that the PEM and the TEM do not
work sequentially: because of the bottom-up processing,
calls to the TEM occur whenever the PEM has anno-
tated a sufficient number of nodes lower in the parse
tree. Thus, calls to the PEM and the TEM are inter-
leaved with each other.

After the primitive-element and transition-element
analyses have been completed, the input sentence is then
classified in terms of the abstract elements and the stylis-
tic goals. A fully annotated parse tree is input to the
Abstract Element Module, which then adds abstract el-
ement information to the structure and passes it on to
the Stylistic Goal Module. Once the stylistic goals have
been determined, the output structure is complete. Fig-
ure 6 shows all the stylistic information contained in the
output structure for the sentence The man in the park
TUNS.

5 Conclusion

Computational stylistic analysis and generation should
ideally be components of any sophisticated natural lan-
guage processing system. However, the difficulties of rep-
resenting stylistic knowledge in a form amenable to com-
putational implementation meant that only ad hoc ap-
proaches had previously been attempted in dealing with
matters of style in NLP systems.

We have shown how a formal theory of style can be
represented by a multi-level grammar that describes the
relationship between low-level syntactic structures and
high-level stylistic goals. In turn, this grammar has been
used as the specification for an implementation, ASSET,
which produces stylistic analyses at multiple levels of ab-
straction. We can foresee such a general-purpose stylistic
analyzer used as a component of NLP systems, such as
for second-language instruction or machine translation,

to produce additional information that contributes to the
full understanding of the implicit meaning of a text.

Acknowledgements

We would like to thank Graeme Hirst for helpfully read-
ing earlier drafts of this paper and providing very useful
advice. We acknowledge the financial support of the
Natural Sciences and Engineering Research Council of
Canada and the Information Technology Research Cen-
tre.

Appendix: Notes on terminology

At all levels of the grammar, the left-hand side of each
rule identifies what is being defined, and the right-hand
side lists one or more alternative realizations, one per
line.

In the grammar, we use various shorthand notations to
simplify the presentation of the rules. However, these ab-
breviated forms can be expanded into standard context-
free grammar rules. The shorthand notations are as fol-
lows; they are illustrated by particular examples, but are
intended for general use:

1. adjectival — intensifier adjective
The juxtaposition of terms on the right-hand
side of a rule indicates a concatenation of in-
stances of these terms. For example, the rule
above allows the intensifier very to be followed
by the adjective happy to form an adjectival,
very happy.

2. adjectival — (intensifier)* adjective
The Kleene star indicates zero or more occur-

rences of the form within parentheses.

3. noun phrase with centroschematic post-
modification

Where a rule has several alternatives, this

shorthand notation using with abbreviates a

long sequence of alternatives (here, the differ-

ent types of centroschematic postmodification).

4, noun phrase with
(centroschematic premodification and
centroschematic postmodification)
And indicates that all conditions on the right-
hand side of a rule must simultaneously be sat-
isfied by a single constituent.

5. noun phrase with
postmodification and
(nominal group or prepositional phrase)
Or indicates that any one of the conditions on
the right-hand side of a rule must be satisfied.

References

DiMarco, Chrysanne and Hirst, Graeme. “A computa-
tional theory of goal-directed style in syntax.” Com-
putational Linguistics, 19(3), 448-497, September
1993.

stylistic_goals(clarity,staticness)
abstract_elements(mono,concord,initial_concord,medial_concord, final_concord)

complete ([mono,concord,initial_concord,medial_concord, final_concord])
major ([mono,concord])

noun_phrase(([centro,mono,concord])
nominal_group(([centro,mono,concord])

premodification([conjuncti],[subjunct2], [centro,mono,concord])
adjectival([conjuncti] , [subjunct2])
definite_article(the)

noun([conjunct0])
lexical_noun(man)

postmodification([conjunctl], [subjunct3], [centro,mono,concord])
prepositional_phrase([centro,mono,concord])

preposition(in)
nominal_group([centro,mono,concord])

premodification([conjuncti], [subjunct2], [centro,mono,concord])
adjectival([conjunctl] , [subjunct2])
definite_article(the)

noun([conjunct0])
lexical_noun(park)

postmodification([conjunct0], [subjunct0], [centro,mono,concord])
postmodification(none)

verb_phrase([mono,concord])
verb(runs)

complement ([mono ,concord])
complement (none)

Figure 6: An example of ASSET’s output.

Green, Stephen J. A functional theory of style for nat-
ural language generation. Master’s thesis, Depart-
ment of Computer Science, University of Waterloo,
1992. [University of Waterloo Faculty of Mathemat-
ics Technical Report CS-92-48].

Halliday, M.A.K. Introduction to functional grammar.
Edward Arnold, London, 1985.

Halliday, M.A.K. and Hasan, Ruqaiya. Cohesion in En-
glish. Longman Group Limited, London, 1976.

Hoyt, Patricia A. A goal-directed functionally-based
stylistic analyzer. Master’s thesis, Department of
Computer Science, University of Waterloo, 1993.
[University of Waterloo Faculty of Mathematics
Technical Report CS-93-43].

Quirk, Randolph, Greenbaum, Sidney, Leech, Geoffrey,
and Svartvik, Jan. A comprehensive grammar of the
English language. Longman Group Limited, 1985.

