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Abstract. Biologically inspired robotics is a rapidly emerging research area standing at the
cross-cut of biology, artificial intelligence, and robotics. The structural and functional perfection
of the biological creatures achieved through thousands of years of evolution in nature have made
them a great source of inspiration for designing complex autonomous systems. Accordingly,
robotics researchers have initiated designing artificial machines while considering the character-
istics of biological systems as the benchmark knowledge. ‘Biomimetics’, an emerging research
area, is a consequence of such initiatives. Bio-inspired robotics is actually a subset of biomimec-
tics focusing mostly on the design of autonomous robots while mimicking the intelligence,
cognition, and structural properties of the primates and other lower order species. Computational
intelligence techniques developed in the past several years are related closely to bio-inspired
robotics as both of them have originated from the common inspiration of mimicking human in-
telligence, although their development have followed different paths. Bio-inspired robotics have
used computational intelligence techniques to mathematically model ‘human-like intelligence
behavior’ for autonomous robots. This chapter provides an overview on the tools of computa-
tional intelligence and their applications in bio-inspired robotics. It highlights the recent progress
made in bio-inspired robotics while giving a special emphasis on the usage of computational
intelligence tools to design human-like cognitive abilities in the robotic systems.

1.1 Introduction

Biologically inspired robotics is a multidisciplinary research area motivated by the in-
spiration of using nature as the benchmark in designing complex autonomous systems
and, at the same time, benefiting nature with the improved system autonomy. Biolog-
ical creatures, with their adaptability, structural sophistication and varieties in behav-
ior, have always been a great source of inspiration for the researchers in robotics. But
substantial research in bio-inspired robotics has started only a few years back. The rea-
sons behind such a delayed start is mainly due to our limited understanding of nature,
and to the lack of technological sophistication to mimic biological systems, both at
the structural as well as the intellectual level. During the past two decades we have
achieved remarkable improvement in closely pertinent areas of bio-robotics such as
nano-technology, artificial intelligence (AI), and neuroscience. Achievements in these
three, apparently disjoint, disciplines have placed us in a position to perform reverse
engineering on biological systems. Increased computing power in gradually diminish-
ing sized computer chips are showing the glimpse of possibility of having computers
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comparable to the primates brain (could be lower order primates) in terms of processing
power, complexity, and compactness. Our steadily developing understanding of living
elements, especially the mechanism of brain functions, theory of interaction among
mind, body, and brain, is opening up possibilities of mimicking them in a more robust
manner. The AI and related disciplines have already earned remarkable improvement
in developing sophisticated computational tools, industry-strength algorithms for ma-
chine learning, image, and speech processing which may help to successfully model the
functionality of biological systems. At the midst of resonance in development among
the related disciplines, bio-inspired robotics has become a topic of significant interest.
A substantial amount of research work has been reported during the current decade in
various sub-disciplines of bio-inspired robotics and the flow is continuously rising.

This chapter provides a brief survey on the trends of bio-inspired robotics while giv-
ing a special focus on how its development has been influenced by the approaches
rooted in computational intelligence (CI). The rest of the chapter is organized as
follows. Section 1.2 sheds light on the history of AI, bio-inspired robotic, and CI tech-
niques, their common origin and underlying goals. Section 1.3 provides a brief dis-
cussion on bio-inspired robotics as an emerging research area and highlights existing
research directions in bio-inspired robotics. Section 1.4 focuses on one of the most
appealing branch of bio-inspired robotics namely, cognitive modeling for autonomous
robots. It focuses on different emerging areas of cognitive modeling for autonomous
robots, provides a brief survey on the state-of-the art of these areas and sheds light
on the role of CI techniques in designing artificial cognition for autonomous robots.
Finally, section 1.5 draws some concluding comments.

1.2 Bio-inspired Robotics and Tools of Computational
Intelligence: The Historic Synergy

1.2.1 Overview

Computational intelligence techniques, e.g. neural networks, fuzzy logic, genetic algo-
rithms, probabilistic algorithms, are well known to be biomimetic computational tools
designed from the inspiration of mimicking the structural and functional elegance of
the human to perceive the environment and act accordingly while applying their intelli-
gence. On the other hand, the dream of a human-like machine (in terms of structure and
intelligence) was there since the birth of AI. The CI techniques and AI, therefore, should
have been complementing each other in the course of their own development as well
as in building a complete model of human-like intelligence. In reality, however, a dif-
ferent scenario has taken place. The development of CI techniques followed a different
path than that of the AI [1]. The CI techniques have experienced tremendous theoretical
growth over the past few decades and have also earned popularity in application areas
e.g. control, search and optimization, data mining, knowledge representation, signal
processing, and robotics. Specifically in AI robotics, a good number of robotic systems
uses CI techniques for robust control, planning, and decision making [2, 3, 4, 5]. Un-
fortunately, these applications do not reflect the vision with which the CI techniques
were originally developed for: modeling human intelligence [6]. The AI, on the other
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hand, ruled by the norms of GOFAI(R) (Good Old Fashioned AI (and Robotics)) [7, 8]
for an extended period of time, failed in many ways to utilize the power of CI tech-
niques in designing human-like intelligence. Thus the long-expected synergy between
AI and CI was delayed until the AI revolution of 1990s [9] which replaced the static
notion of “ ‘mind-as-computer’ in a symbol-based representation of the world” with
the dynamic idea of ‘embodied cognition’. Embodied cognition advocates the notion
of bidirectional active interaction among body, mind, and environment as the build-
ing block of developing intelligence, both natural and artificial [9, 10, 11, 12, 13]. The
current AI robotics, therefore, is focusing on modeling the highly complex, non-linear
interaction among mind, body, and environment, the self-motivation to build knowledge
base, the automated reasoning, and decision making. The ideas of embodied cognition
places CI techniques back in the stage of AI. The CI tools blend naturally with these
concepts as they share the common principles of biology. The CI techniques, therefore,
are very efficient tools to design bio-inspired intelligence in autonomous robots.

1.2.2 The CI Tools Most Commonly Used in Bio-inspired Robotics

The CI tools developed in the past several years have been widely used in different
branches of bio-inspired robotics. New research challenges with higher complexities
are arising as we are approaching toward the goal of designing human-like intelligent
machines. To meet these challenges new CI tools are being developed as well as mod-
ification of the existing tools are being performed. For instance, artificial immune al-
gorithm [14] has been developed based on the inspiration of human immune systems
and type 2 fuzzy logic [15] has been proposed as an extension of tradition fuzzy logic
to include probabilistic uncertainty in fuzzy reasoning. A brief introduction on the CI
tools most commonly used in the existing bio-robotics literature is provided here.

1.2.2.1 Artificial Neural Network
Artificial neural network (ANN) is one of the most commonly used CI tools in bio-
inspired robotics [16]. ANNs mimic the highly parallel structural connectivity and non-
linear operating principle of the brain cells (known as neuron) of biological creatures
[17]. The structure of a single artificial neuron (also known as perceptron) is very sim-
ple: input terminal(s), one output terminal, and a function defining the mapping from
input(s) to the output. The simple perceptrons connect with each other in layered archi-
tectures to form different kind of neural networks which are generally capable to handle
even very high degree of non-linearity. One elegant property of ANNs is they allow the
exact pattern of non-linearity to emerge within themselves through the process of train-
ing. There are algorithms to conduct efficient training of ANNs. The theories of neural
network have gone through several facets of development in the past decades resulting
in varieties of ANNs suitable for different application areas, e.g. data mining, robotics,
communication.

1.2.2.2 Fuzzy Reasoning
Fuzzy reasoning is another CI tool which mimics the capacity of human mind to pro-
cess partial truth in observed phenomena [18]. Fuzzy logic, the mathematics of fuzzy
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reasoning, advocates that the traditional crisp (or binary) logic which deals with the
two extreme ends (‘yes’and ‘no’) of the decision paradigm is just a special case of
fuzzy logic. Fuzzy reasoning, therefore, is governed by the norms of partial member-
ship and assigns a degree belief in favor of a proposition. Such degree of belief may
take any value between zero to one. The elegance of fuzzy logic lies in its simplicity
to model even extremely complex, high-dimensional decision problems. This results in
its widespread application in areas such as control, pattern recognition, artificial intelli-
gence, and robotics.

1.2.2.3 Evolutionary Algorithms
Evolutionary algorithms (EA) are generally considered as search and optimization tech-
nique inspired from the principle of natural selection. They provide a structured way to
locate the most suitable solution in a highly complex search landscape. EAs generally
perform a series of operations (selection, mutation, crossover) to iteratively optimize
a fitness function. Starting form the simple form as proposed in [19], the evolution-
ary algorithms have went through numerous modifications to suit with the increasing
complexities of todays search problems. A number of new search and optimization al-
gorithms has been developed in recent years based on the inspiration from nature, e.g.
artificial immune algorithm [14], swarm intelligence [20], ant-colony optimization [21].
The application of EAs in bio-inspired robotics is still relatively less appealing due to
its high time complexity.

1.2.2.4 Probabilistic Algorithms
Probabilistic algorithms have been quite useful in several areas of mobile robotics in-
cluding bio-inspired robotics. This is because of their capacity to deal with the uncer-
tainty inherent in real-world robotic problems [22]. The probabilistic algorithms used
in bio-inspired robotics are generally related to Bayesian inference, Bayes network and
different variants of Bayes filter [23, 24, 25]. The mechanism of posterior formation
based on prior knowledge and observation likelihood makes Bayes theorem a suitable
candidate in modeling intelligence behavior for robotics systems. Besides, the mathe-
matical structures of Bayes network and Markov model are well suited for state based
robotic systems.

1.3 Bio-inspired Robotics: An Emerging Research Field

Bio-inspired robots are a new kind of research platforms developed to fulfill the two-
pronged desire of humans: enhancing the quality of human life by incorporating artifi-
cial systems in it and, at the same time, improving the system design through integrating
biology with it. The major driving forces behind the research on bio-inspired robotics,
therefore, can be summarized as follows.

• Robots to assist human: During the last decade mobile robotics has experienced
a significant forward shift toward real-world applications from the laboratory based
research. The Mars rover mission [26], winning of DARPA grand challenge 2005
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[27], robotics application in surgery [28] and health care [29] are among few ex-
amples. The bio-inspired robots are expected to top the current successes of mobile
robots with their human-like sophistication in perception, reasoning, decision mak-
ing and locomotion. These robots will be able to adapt autonomously in chang-
ing environment, will apply learned knowledge and reasoning capacity to solve
new problems, and above all will be able, to a large extent, to take care of them-
selves [30]. This sort of machines have potential to drastically improve the quality
of human life through providing assistance in several areas such as search and res-
cue, mining, space-applications, military- surveillance, entertainment, surgery, and
health care.

• Robots to understand human: The other inspiration of bio-inspired robotics is to
have a better understanding of the capacities that the humans are blessed with [31].
Until recently, the flow of knowledge between biology and robotics was unidirec-
tional, from biology to robotics. During the last decade a bi-directional link has
been established between biology and robotics based on the realization that life-
like machines provide a wonderful platform to quantitatively test and analyze the
computational models and theories from neuroscience [13, 32], psychology, devel-
opmental study [33], and human locomotion [34, 35]. As mentioned in [36], the
bio-inspired robots act as the ‘mirror to reflect our humanity back at us as we inter-
act with them’.

Designing a robot with human-like sophistication in structure and intelligence is a cross-
disciplinary endeavor and requires intense collaboration among disciplines such as bi-
ology, neuroscience, psychology, linguistics, robotics and AI. The efforts made in this
endeavor can be categorized into four distinct categories.

• Biomimetic perception: Perception is the key requirement for survival of the living
elements [37]. The pre-requisites of primates- like reasoning and decision making
is to have primates- like perception. The perceptual system, therefore, is one of the
most significant aspects of bio-inspired robot design. There is a steady progress in
the development of biomimetic sensors and actuators technology. Such sensors and
actuators enable a robot to perceive and interact with the environment in primates-
like fashion (more specifically, human like). In other words, biomimetic sensors
and actuators help the robots to perceive the same representation of the world as
human does and thereby ease the blending of robots in the human environment.
The log-polar camera for human like vision [38], haptic devices to mimic touch
sensitivity [39], micro electro-mechanical systems (MEMS)[40] and elector-active
polymer (EAP) to model the biological muscles [41] are among the many exam-
ples of biomimetic sensors and actuators. The possibility of integrating soft tissue
to construct flexible and deformable robots are on the way to become full-fledge
areas of research and applications [42]. A large group of robotics researchers are
currently working on reverse engineering the performance characteristics of biolog-
ical sensors to formalize control mechanisms of biomimetic sensors as well as their
power requirements and efficiency.

• Locomotion and control: Locomotion of autonomous robots based on the motion
primitives or imitation of biological creatures is a rapidly emerging research area
in bio-inspired robotics. The major focus is to mimic lower level sensory-motor
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skills of biological creatures (ranging from insect to human) in autonomous robots.
Bipedal walking by humanoid robots [43, 44], humanoid upper body control [45,
46], design and control of articulated robots e.g. reconfigurable robots [47, 48],
crawling and jumping robots [49, 50, 51] are only a few examples of widespread
research in bio-inspired locomotion control in robotics.

• Control architectures and learning methodologies: These are the sub-discipl-ines
of bio-inspired robotics which have been using bio-inspired mechanisms for a long
period of time. Majority of the existing control architectures used in autonomous
robotics are bio-inspired. The traditional reactive [52], deliberative, and hybrid
[53] controllers are inspired from insect locomotion control mechanism whereas
the relatively newer behavior-based controller [54] obtains inspiration from human
cognition. Similarly, the learning methodologies commonly used in robotic, e.g. re-
inforcement learning, associative learning, classical conditioning, automated animal
like (AA)-learning [55], neural network and statistical learning, are designed based
on the learning process of biological creatures ranging from insect to human.

• Cognitive modeling: Cognitive modeling deals with implanting human-like cogni-
tion, albeit reduced complexity, in autonomous robots with the hope that the cog-
nitive capacities, as they work in human and other biological creatures, will also
assist the new generation robots to be coherent, self-motivated, social, persistent
in behavior, and aware of themselves and their environments. Cognitive model-
ing, therefore, requires integration of neuroanatomy, cognitive neuroscience, cog-
nitive psychology, developmental study, linguistics, and AI with robotics. A rapidly
increasing number of publications on different aspects of cognitive modeling in-
dicates the growing interest in this research area, although a complete model of
robot cognition does not yet exist [56, 57]. The latest findings of neuroscience
and psychology are continuously modulating the research on cognitive modeling
for autonomous robots. Apart from few general theories on robot cognition (e.g.
[9, 46, 58, 59, 60, 61]), the majority of the literature is focused on developing mod-
els for discrete cognitive abilities, e.g. attention, learning, value system, reasoning,
and decision making. The research on cognitive modeling for autonomous robots,
therefore, is still in its infancy and there is a long way to traverse before having a
full fledge autonomous robot with human-like cognition.

A large number of university research laboratories around the globe is performing re-
search on different areas of bio-inspired robotics: the biologically inspired robotics
group at Ecole Polytechnique, the biorobotics laboratories at Harvard University, Uni-
versity of Washington, and MIT, the cognitive robotics labs at Vanderbilt University,
Technical University of Munich, University of Genova, Michigan State University, Uni-
versity of Southern California, and Idaho National Laboratory. A growing number of
conferences (e.g. EpiRob, ICDL) and journals (e.g. International Journal of Humanoid
Robotics, special issues on bio-robotics of the IEEE Transaction on Robotics and Con-
nection Science) are now fully dedicated to the findings from bio-inspired robotic
research.

The rest of this chapter focuses on the emerging use of CI techniques in cogni-
tive modeling for autonomous robots. It provides a survey on the state-of-the-art of
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cognitive modeling in pursuit of human-like intelligent machine and investigates on
how the CI tools have been invoked in modeling different aspects of cognition. It also
advocates the idea that the features of cognition emerges naturally in CI techniques,
when properly utilized. The CI tools, therefore, offer a very convenient way to model
artificial cognition in autonomous robots.

1.4 Cognitive Modeling for Autonomous Robots: CI-Based
Approaches

With the tremendous advancement of computer systems, both in speed and storage
capacity, AI has achieved significant strides during the past decades. Several AI
techniques have emerged as a consequence of the enriched computational power. The
advancements in AI robotics, to a large extent, is the consequence of this enriched
computational power. However, today’s computers with their enormous speed and stor-
age capacity essentially act as mindless intelligence, executing complex routines with
extreme efficiency but showing minimal awareness about the tasks they are perform-
ing. AI researchers, therefore, have started working on developing cognitive computers
which will be able to learn from its experience and apply the learned knowledge to deal
with anomalies [62]. Initiatives taken by AI robotics researchers are one step ahead of
this effort. Their idea is to develop embodied physical agents namely, cognitive robots,
which are expected to act, behave, and think like humans while interacting with natural
human environments. In pursuit of such an ideal goal, the only target device to mimic
has always been the human brain. With the advent of new technologies, such as fMRI
(functional Magnetic Resonance Imaging) [63], PET (Positron Emission Tomography)
[64], neuroscience has been experiencing a significant forward shift toward a better un-
derstanding of human brain, yet major part of it is still unknown [37]. The advancements
in neuroscience have introduced a remarkable change in the perception of the psychol-
ogists about human cognition and have encouraged the thought of explaining cognitive
developments in terms of the changes in physical structure of the brain [65, 66, 67, 68].

1.4.1 Cognition: Robot and Human

Since antiquity cognition has been a major research area in psychology and philoso-
phy. It is probably one of the areas where modern neuroscience and psychology have
performed the most significant improvement, although there is still a lot more to know
[37, 68]. Elucidating cognition in a precise manner is difficult, yet all of us are generally
aware of our cognitive abilities. In simple words, ‘cognition’ of a living element refers
to its capacity to process perceptual information and thereby manipulating its behav-
ior. Human cognition encompasses a large collection of processes occurring in human
mind. The cognitive capabilities of humans are generally manifested in the following
[10, 11, 37, 66, 67, 68].

• Self awareness,
• perception,
• learning,
• knowledge,
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• reasoning,
• planning and decision making.

Generally, action execution is not considered as a part of cognition, although cogni-
tive development is largely influenced by our capability to act upon the environment.
Besides, action is the only explicit means onto which we reflect our cognitive skills.
Designing an artificial agent with some or all of these powerful capabilities is the new
grand challenge of AI [30, 62]. A number of attempts have been made over the past
few years to meet this challenge and gave birth to a number of new research areas
including ‘developmental engineering’ [46], ‘epigenetic robotics’ [69], ‘developmen-
tal robotics’ [58], and ‘developmental cognitive robotics’ [60]. All of them share the
common vision of designing human-like cognitive agents, irrespective of their names
and the methodologies applied. This chapter addresses these ‘similar vision’ efforts as
‘cognitive modeling for autonomous robots’.

Based on the recent neuro-biological and psycho-physical findings about execu-
tive cognitive functions of human being (e.g. attention, learning, perception, social

Fig. 1.1. Example robotic systems based on bio- inspired cognitive models (a) Kismet (MIT), (b)
ISAC (Vanderbilt University), (c) SAIL robot (Michigan University) (d) Babybot (University of
Genova)
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communication), an impressive amount of research work has been carried out during
the current decade in the following sectors of cognitive modeling:

1. Value system
2. Visual attention
3. Social cognition

The rest of this chapter will provide a brief survey on the state-of-the-art of each of
these sectors of cognitive modeling. Two criteria have been defined for a research work
to be included in the survey presented in this chapter.

• The research has to apply computational intelligence (CI) techniques to deal with
the problem in the associated research area.

• The research has to demonstrate the performance of the designed intelligence frame-
work using any physical robotic system.

The representative works in different sectors of cognitive modeling (value system, vi-
sual attention, and social cognition) are summarized and presented in tabular form for
convenience in comparison.

1.4.2 Value System

The value system refers to the capacity of a biological brain to increase the likelihood of
neural response to an external phenomena provided that there exists a prior experience
of having the similar phenomena [70]. The combined action of internal perception,
reasoning and decision making capacity contributes in development of values in the
primates. Value is not hard-wired in human since birth, rather it grows developmentally
while mediated by the plasticity of human brain [10, 11, 37]. Accordingly, the value
with which a biological entity is born with is termed as ‘innate value’ whereas the value
that it achieves through experience during the course of development is called ‘acquired
value’. The plasticity of human brain, which makes the development of acquired value
possible, is a recent discovery in neuroscience. The acquired value of a biological entity
is reflected in its behavioral adaptivity. The robotic counterpart of value refers to the
capacity of an autonomous robot to plan action upon detection of salient stimuli. A
robot with value system performs this action planning after analyzing its internal and
external context [13, 71]. Internal context of a robot is the knowledge-base developed
through past experiences whereas external context refers to the current environmental
situation in favor of a planned action. A value-based robot, therefore, is aware of its
own action.

Value system is a crucial requirement of developing human-like intelligence in
robotic systems. The success of designing truly developmental robot depends largely
on the design of a value system. The basic idea of the artificial value system for
autonomous robots is to design a mechanism which can reflect the effect of the past
experience in the future behaviors (e.g. in planning of specific action, perceptual cate-
gorization, conditioning, autonomous exploration) of the robots. Artificial value system
essentially tries to modulate the behavior of an autonomous system (e.g Fig. 1.2 shows
the modulating effect of value system in the SAIL robot cognitive architecture [72]).
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Fig. 1.2. Modulating role of value system in the cognitive architecture of SAIL robot in university
of Michigan (adapted from [72])

Considering value system in the primates as benchmark [73, 74], the properties ex-
pected in an artificial value system for the autonomous robots can be summarized as
follows.

• Prediction: Predictive power is an important requirement of a value system. The
system should be able to infer the consequences of its own action before actually
executing it. This sort of predictive action planning requires the capacity to apply
reasoning and knowledge-base to analyze perceptual information.

• Task non-specific: An artificial value system must be general and should operate in
a task non-specific manner. It must be unsupervised and should enable a robot to
learn by itself (from the consequence of its action) without any help from human
instructor. Instructional scaffolding is a very popular mechanism in the primates
(specially, human being) to boost value system development during the very early
stage but the supervision obtained through scaffolding is expected to be decayed
gradually in order to facilitate the natural cognitive development [80]. In a similar
manner, limited support is allowed during the early development of artificial value
system in robotic agents but, gradually, the system should be capable of evolving in
a an autonomous manner based on the interaction with its environments.

• Developmental: Similar to the value system in biological entity, the artificial value
system might have innate and acquired components. Innate value, in artificial sys-
tems, is modeled through assigning prior determined importance to different ac-
tions. The acquired value, on the other hand, should generate developmentally. An
artificial value system must have the plasticity to continuously encode the feedback
that it receives from its interaction with environment. This encoding of experience
should be in such a way that facilitate emergence of adaptive behavior.

• Value-based Learning: Learning is the prime mechanism which get modulated
through the activities of value system. An artificial values system, therefore, should
be capable of generating modulating signals to adapt various learning parameters,
e.g bias (positive or negative), learning rate.
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Table 1.1. Research on artificial value system for autonomous robots

Lead research Synopsis CI technique Robot

Value system Development of NN Khepera
[13] a neuromodulatory (continuous) (Monad)

system based on firing rate
conditioning and model
categorization

Value system Development of Q-learning HR
for developmental motivation and (SAIL robot)
robot action planning
[71, 72, 75] through value system

Intelligent Intrinsic motivation NN or PR
Adaptive generation for any standard (AIBO)
Curiosity action planning learning
[76, 77] algorithm

Adaptive Development of NN MR
behavior a self-modulating (DARWIN V)
[78] value system

Value system Value guided NN Khepera
for categorization exploration
[79] and perceptual

categorization

PR: Pet Robot MR: Mobile Robot HR: Humanoid Robot

Table 1.1 summarizes the research on value system design in autonomous robots. The
initial attempts to design artificial value system were made by a group of researchers
using robotic systems as a testbed to simulate the theories of primates nervous sys-
tem [59, 81, 82, 83]. The efforts on designing artificial value system with the goal
of developing human-like intelligence in robotic systems, however, are very limited.
With the advancement of developmental robotics, the value system design for au-
tonomous robot is gradually gaining attention of the bio-inspired robotics researchers
[13, 71, 72, 75, 76, 77, 78, 79].

Artificial Neural networks generally dominate as a design tool in the development
of artificial value system. The reason behind this, partly, is our current understanding
about the operation of the primates value system. The findings on developmental plas-
ticity suggest that experience drastically changes the ease with which neurons interact
with each other [10, 11, 37]. The architecture of artificial neural networks provides a
suitable way to model this synaptic modulation as adaptive weight adjustment among
connecting neural processing elements.
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1.4.3 Visual Attention

Attention, in a biological system, refers to the process of selecting a set of relevant infor-
mation for further processing. It plays a key role in the survival and normal operation
of the biological entities as the gate-keeping activity of attention saves the informa-
tion processing unit (generally the brain) from being flooded with enormous amount of
information. Computational modeling of the primates attention mechanism (more ac-
curately, visual attention mechanism) has become a very popular research area in the
recent years due to it potential applications in computational neuroscience, computer
vision, automated video surveillance, and AI robotics.

The purpose of attention mechanism, when applied on the artificial systems, is
essentially the same as that in the biological systems: focusing on behaviorally rel-
evant information for further processing. A properly designed attention system pro-
vides a task-executing robot with the capacity to blend with human in natural human
environment.

Extensive research has been performed on the visual attention mechanism of the
primates, both in psychology [65, 68, 84, 85, 86, 87, 88, 89] and neurobiology [90,
91, 92, 93, 94, 95]. Based on these research a good number of bio-inspired computa-
tional model of visual attention has been proposed in computer vision [96, 97, 98, 99,
100, 101, 102, 103, 104] and in computational neuroscience [105, 106, 107, 108, 109].
The models in computer vision mostly focus on the technical aspects of the atten-
tional mechanism while the goal of the models in computational neuroscience is to
simulate the findings from the primates behavioral data. In the recent years, with
the emergence of bio-inspired robotics, the robotic researches have started work-
ing on developing artificial attention mechanism for embodied physical robots. Ac-
cordingly, a number of attention models has been proposed in robotics literature
which are dealing with embedding artificial attention mechanism in robotic systems
[103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121]. This chapter catego-
rizes the existing literature on visual attention into three different groups.

• Theoretical model for visual attention: This group includes the theoretical models
of visual attention which are based on CI technique and have been implemented in
robotic systems for attention modeling. The most notable work in this category is
the neuromorphic vision tool-kit (NVT) [99, 122](Fig. 1.3). NVT is an extension of
the first computational model of visual attention proposed in [97]. It uses winner-
take-all type neural network (WTA-NN) for selective attention modeling. The WTA
NN have earned huge popularity in the later years and is a key tool for attention
modeling in majority of the existing visual attention models, although it has been
considerably modified from its original form as proposed in [97]. A good number of
works in robotics uses different variants of WTA NN and NVT to implement visual
attention [111, 113, 123, 124, 125].

• Robotic model of visual attention: The visual attention models developed specif-
ically for robotic systems are included in this category [111, 116, 126, 127, 128,
129, 130]. A considerable number of model in this category are based on NVT and
WTA-NN. Apart from that, competitive NN, radial basis function (RBF), self orga-
nizing map (SOM), arrays of neural processing elements (PE) are popular CI tools
used for visual attention modeling.
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Fig. 1.3. Neuromorphic vision toolkit: an architecture of visual attention mechanism (adapted
from [99])

• Task specific visual attention model: Focusing attention on an object of interest
is the pre-requisite of learning skill development. A substantial number of robotic
system, therefore, use visual attention as the basic mechanism to achieve different
cognitive skills. These systems generally develop task-specific models of visual at-
tention where the task in hand might be object manipulation [131, 132, 133, 134],
different forms of human robot interaction (HRI) [61, 135, 136, 137, 138, 139], and
robot navigation [125].

For quick reference, tables 1.2, 1.3, and 1.4 summarize the leading researches under
each of the above mentioned categories, respectively. The existing models of visual
attention have achieved significant success addressing the issues of ‘what to attend’,
‘when to attend’, and ‘how to attend’[103].

The majority of the visual attention models for the autonomous robots use differ-
ent kind of artificial neural networks. The reason behind this, partly, is that the earlier
computational models of visual attention were NN-based. The another reason is that
the enriched formulation of artificial neurons act as a very strong tool to mimic (albeit
reduced complexity) the neural circuity of visual cortex dedicated to attention selec-
tion. As the goal of bio-inspired robotics is to mimic the functionality of biological
system rather than the exact mechanism, there are possibilities for other computational
techniques to be used in developing visual attention models. For instance, fuzzy rea-
soning could play a substantial role in visual search modeling because of its tolerance
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Table 1.2. Theoretical models of visual attention

Lead research Synopsis CI technique

Adaptive A neural network Neural network
Resonance based on attention
theory [96] mechanism. Combines

top-down and bottom
-up attention

Koch’s Model [98], Computational model Winner-take-all
Neuromorphic of visual attention. neural network
vision tool- Implements saliency (WTA NN)
kit (NVT) map and inhibition
[99, 122] of return (IOR)

Selective tuning Conncectionist model Neural network
model [101] of visual attention

Feature-gate Conncectionist model Spatially distributed,
model [102] of visual attention. hierarchical neural

Combines feature network
integration theory [84]
and guided search [85]

to partial truth [56]. Further, statistical learning methodologies offer great versatility in
the learning of attention based cognitive skill. Specifically the probabilistic architec-
ture provides the most suitable way to handle the perceptual and decision uncertainty
inherent in robotics applications. We have not yet found a general purpose model of
visual attention capable to tackle all the existing challenges. Integration of different CI
techniques might be a very intriguing way to walk toward this goal since it may capture
different functionalities that can not be handled by an isolated CI or AI approach.

1.4.4 Social Cognition

Social cognition development in autonomous systems is a widely explored research
area in bio-robotics. The research on socially interactive robots has been experienc-
ing a steady development since the birth of biologically inspired robotics. A number
of significant achievements have been made, but researchers are interested about very
high-level social interaction conducted by robotic agents. A number of different classi-
fications and taxonomies are available for socially interactive robots ([33, 36, 158, 159]
are suitable for extensive survey). This document focuses on the body of research dedi-
cated to design task non-specific social cognition in robotic agents as a part of fulfilling
the goal of designing human-like cognition in robotic systems. Such research works
generally involve the theories of social development of the human proposed in psy-
chology, ethology, linguistics, neuroscience and developmental cognitive neuroscience.
The target robotic systems for these approaches may possess physical embodiment but
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Table 1.3. Robotic model of visual attention

Lead research Synopsis CI technique Robot

Distributed Multi-processor WTA NN 7 DOF
attention [113] attention model (Koch’s model) HH

Object-based Considers object WTA NN HR
attention [111] as elemental unit (NVT) (Babybot)

for attention.
Evaluates object-
based saliency map.

Attention Efficient visual Neural network CH
network [140] search by robotic (Feature gate

system model)

Overt Implements space Competitive NN HR
attention [110] -based saccade [141]

and IOR

Attention and Implements space WTA NN CH
saccade generation -based saccade (Koch’s model)
[123]

Autonomous A developmental Hierarchically HR
mental design of visual connected neural (SAIL robot)
development attention processing
(AMD) [58, 142] mediated by elements (PE)
[143, 144, 145] subsumption [54]

NeuroBotic Object classifier Hierarchical MR
system based on task- radial basis (Peoplebot)
[116, 126, 127, 128] relevance function (RBF)

MirrorBot A distributed Continuum MR
project model of neural field (peoplebot)
[129, 130] spatial attention theory

Multi modal Directing visual NN CRA
attention attention to
[146, 147] respond stimuli

arising through
different modality

Brain based Attention-based network of MR
devices perceptual mean firing- (Darwin VII)
[32, 59] categorization rate neurons
[148] and visual binding

HH: Humanoid HR: Humanoid CH: Camera CRA: Camera on
Head Robot Head Robot Arm
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Table 1.4. Task-specific model of visual attention

Lead research Synopsis CI technique Robot

Attention for visual attention Coupled dynamic MR
manipulation helps to perform neural field
and reasoning manipulation task
[131] and plan task activities

Attention guided visual attention NN CH
object manipulation mechanism help
by robotic hand a robot to focus
[132] on target object

for grasping task

Visual A connectionist Spiking and MR
attention for attention model mean firing- (Khepera)
mobile robots for task executing rate neurons
[133, 134] robots (selective

tuning model)

Attention attention mechanism WTA NN MR
guided robot is used to calculate and RBF
navigation the orientation of NN
[125] a robotic system

Intelligent RBF associated NN HR
machine with sensory (ISAC)
architecture egosphere
for HRI implements
[61, 135] visual attention
[136, 137]

not necessarily human-like morphology or face, although these two have been proved
to facilitate the social interaction between robots and humans. This type of socially
interactive robot has been termed in the literature as ‘sociable robot’ [159].

The studies in psychology and neuroscience on social cognition development in hu-
mans identify the active interaction with other human as well as with the environment
as the key criteria of social cognition development in human child [10, 80, 160]. The AI
robotics research on social cognition development in autonomous systems, therefore,
is primarily focusing on developing mechanisms used by the robots to interact with
humans. The efforts in this area can be categorized into the following two groups.

• Joint attention: Shared or joint attention refers to the ability to intentionally attend
to an object/region of mutual interest. This is the ability that human infants start to
achieve as early as six months [161]. Joint attention is an extremely complex process
demanding the capacity to understand other peoples perspective and intention. It is
a fundamental requirement for developing social cognition. An impressive body
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Table 1.5. Research on joint visual attention

Lead research Synopsis CI technique Robot

Active learning Learning joint RBF NN HR
of Joint attention through (NICO)
attention pointing and
[149, 150] reaching by robots

Learning Passive learning Multilayer HH
joint attention of joint attention NN,
[151, 152, 153] through bootstrap Q-learning

mechanism

Attention Joint attention WTA NN HH
for social between human (NVT) (Kismet)
communication and robots based
[124, 154] on eye contact
[155, 156]

Join attention Joint attention Self organizing MR
learning for HRI between human map (SOM)
[138, 139] and robots based

on gaze following

Joint attention Imitation is Recurrent HR
for imitation achieved through NN (RNN) (Sony QRIO)
[157] joint attention

of research work has been reported in the past few years on developing the joint
attention capability in robotic systems. Table 1.5 provides a brief summary of the
research on joint attention. Gaze following technique has been used in a number of
works to identify the intent of the partner in a social engagement [124, 138, 139,
154, 155, 156]. Using the embodiment of the robots to attract the attention of partner
(e.g. through pointing fingers or waving hand) is another popular way of achieving
joint attention [149, 150].

• Social imitation: Learning through imitation has gained much popularity in bio-
inspired robotics. Imitation provides a powerful way of developing social behavior.
More specifically, the sensori-motor skills required to generate different types of
social cues (e.g. pointing, reaching, waving) and task sequence learning are the two
major areas where imitation based interaction between humans and robots plays
a very significant role. The success of imitation based learning, however, depends
on the integration with other cognitive abilities of a robotic system, e.g. attention,
values system. The task of skilled imitation, therefore, has been termed as a ‘hard
problem’ in [162] subjected to the issues ‘what to imitate’, ‘when to imitate’, ‘how
to imitate’, and ‘what is the evaluation criteria of imitation’. Table 1.6 presents a
brief summary of research on imitation based learning as a means of developing
social cognition in autonomous robots.
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Table 1.6. Research on social imitation

Lead research Synopsis CI technique Robot

Imitation Motion sequence Bayesian HR
learning generated by a learning, (Fujitsu
[163] human teacher to Hidden Markov HOAP-2)

perform simple model (HMM)
tasks are observed
and imitated

Learning A training RNN HR
motor skills phase trains (Sony
through the robot QRIO)
imitation with different
[164] motor skills.

The robot imitate
learned skills in
future engagements

Imitation Attention guided Reinforcement HR
behavior imitation of learning, HMM (Kenta)
[165] hand posture
Learning Manipulation task HMM, HR
through is learned through probabilistic (HOAP-2)
demonstration imitating the task analysis
[166, 167] sequence executed

by a human teacher
Early Developmental NN, causal HR
imitation approach of learning (H3)
ability imitation.
[168] Learning

imitation
through self
exploration

Gaze shift Learning of HMM MR
learning gaze shifting (Pioneer)
by imitation inspired by
[169] saliency through

imitating
caregiver

Learning by Architecture NN HR
imitation for learning
[170, 171] motion primitives

through viewpoint
transformation and
visuo-motor mapping
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Fig. 1.4. The humanoid robot HOAP-2 engaged in an imitation task (adapted from [163])

Similar to value system and visual attention, the research on social cognition is in-
fluenced by different types of artificial neural networks [164, 170, 171], although
probability-based algorithms have earned much popularity in the design of social imi-
tation capacity [163, 165, 166, 167, 169].

1.5 Conclusion

The ultimate goal of bio-inspired robotics is to build human-like machine, in terms of
morphology as well as functionality. The solemn purpose of developing human-like
machine is the hope that their human-like intelligence will help them to blend natu-
rally with humans and be a great assistance in human’s everyday operations. For in-
stance, intelligent life-like machines will tremendously improve the quality of human
life through their assistance in industry, health care, search and rescue, cleaning and
household works, space-operation, education and entertainment. Design of human-like
machine remains a challenge for the next generation autonomous robotics. Mimicking
the mechanism of intelligence development in the biological creatures (specially in hu-
man) is currently seen to be a better option in resolving this challenge as compared to
the earlier efforts of ‘hand-coding’ the intelligence in machines. In this endeavor one
important issue, as mentioned in [172], is mimicking the intelligent behavior of a bio-
logical creatures does not guarantee an automatic emergence of intelligence in a target
machine. Rather we have to find the underlying principle that governs the emergence
of intelligent behavior. Mimicking the principle, rather than the outcome, might lead us
to our goal of designing life-like machine. At this point, the CI techniques show us a
relatively better hope. Majority of the CI techniques are developed based on different
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elegant aspects of the biological creatures, e.g. morphological structure, thinking pro-
cess, evolutionary selection. The CI techniques, therefore, blend naturally with the goal
of bio-inspired robotics.

This chapter have summarized some efforts to reach the goal of designing human-
like machine mediated by different CI techniques. The major focus was on the research
on cognitive modeling for autonomous robots. Majority of the research in cognitive
modeling is intended to model the small pieces of cognition, e.g. attention, value sys-
tem, social interaction. Different kind of neural networks have gained more popularity
and acceptability in this endeavor as compared to the other CI tools, e.g. fuzzy reason-
ing, genetic algorithm and probabilistic reasoning. The integration of neural network
with other powerful CI tools might improve the scenario significantly, although such
efforts are still in the early stages. After designing the small pieces of cognition, the
most crucial part is to integrate them in a single architecture and have them interact
with each other in a meaningful way so that we can see human-like manifestations of
cognition as their integrated outcome. Such an architecture is yet to be developed but
we hope that the CI techniques will contribute in its design, the same way they have
been contributing in modeling the discrete cognitive abilities of autonomous robots.
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