Let p be a prime. Prove that in $\mathbb{Z}_{p}[x]$, there exist a non-constant polynomial with no root in \mathbb{Z}_{p}.

Solution: Let $0,1,2, \ldots, p-1$ be all the elements of \mathbb{Z}_{p}. Consider the following:

$$
p(x)=x(x-1)(x-2) \cdots(x-(p-1))+1=\prod_{j=0}^{p-1}(x-j)+1
$$

Notice that $p(x) \in \mathbb{Z}_{p}[x]$. Further, this polynomial has no root in \mathbb{Z}_{p} since

$$
p(k)=1
$$

for any $k \in \mathbb{Z}_{p}$. Hence this polynomial has no root in \mathbb{Z}_{p}.

