Let p be a prime. Prove that in $\mathbb{Z}_p[x]$, there exist a non-constant polynomial with no root in \mathbb{Z}_p .

Solution: Let 0, 1, 2, ..., p - 1 be all the elements of \mathbb{Z}_p . Consider the following:

$$p(x) = x(x-1)(x-2)\cdots(x-(p-1)) + 1 = \prod_{j=0}^{p-1}(x-j) + 1$$

Notice that $p(x) \in \mathbb{Z}_p[x]$. Further, this polynomial has no root in \mathbb{Z}_p since

$$p(k) = 1$$

for any $k \in \mathbb{Z}_p$. Hence this polynomial has no root in \mathbb{Z}_p .