Find the cube roots of $1-2 i$. (You may leave part of your answer in terms of \arctan).

Solution: We are trying to solve $z^{3}=1-2 i$. Let $z=r e^{i \theta}$. Then

$$
r^{3} e^{i 3 \theta}=1-2 i
$$

Taking lengths gives (by PM)

$$
\left|r^{3} e^{i 3 \theta}\right|=\left|r^{3}\right|\left|e^{i 3 \theta}\right|=|r|^{3}=|1-2 i|=\sqrt{(1)^{2}+(-2)^{2}}=\sqrt{5}
$$

Hence $r=\sqrt[6]{5}$. Next, we substitute this back into the first displayed equation to get that

$$
e^{i 3 \theta}=r^{-1}(1-2 i)=e^{i \alpha}
$$

where $\alpha=\arctan \left(\left(-2 r^{-1}\right) /\left(r^{-1}\right)\right)=\arctan (-2)$. Hence

$$
3 \theta=\alpha+2 \pi k
$$

for any integer k. Solving for θ gives

$$
\theta=\alpha / 3+2 \pi k / 3
$$

As in class, $k \in\{0,1,2\}$. Hence,

$$
z \in\left\{\sqrt[6]{5} e^{i(\arctan (-2) / 3)}, \sqrt[6]{5} e^{i(\arctan (-2) / 3+2 \pi / 3)}, \sqrt[6]{5} e^{i(\arctan (-2) / 3)+4 \pi / 3)}\right\}
$$

