Using the fact that $\tan (\pi / 12)=2-\sqrt{3}$, find the polar coordinates of

$$
-\sqrt{3}-(2 \sqrt{3}-3) i .
$$

Solution: First we compute the length of the given complex number:

$$
\begin{aligned}
r & =|-\sqrt{3}-(2 \sqrt{3}-3) i| \\
& =\sqrt{(-\sqrt{3})^{2}+(-(2 \sqrt{3}-3))^{2}} \\
& =\sqrt{3+4(3)-12 \sqrt{3}+9} \\
& =\sqrt{24-12 \sqrt{3}} \\
& =2 \sqrt{6-3 \sqrt{3}}
\end{aligned}
$$

Now, to compute θ, the angle of rotation with respect to the x-axis, we perform:

$$
\begin{aligned}
\arctan \left(\frac{y}{x}\right) & =\arctan \left(\frac{-(2 \sqrt{3}-3)}{-\sqrt{3}}\right) \\
& =\arctan \left(\frac{\sqrt{3}(2-\sqrt{3})}{\sqrt{3}}\right) \\
& =\arctan (2-\sqrt{3}) \\
& =\pi / 12
\end{aligned}
$$

Thus, since our original complex point is in the third quadrant, we have that $\theta=\pi+\pi / 12=13 \pi / 12$. Hence, in polar coordinates,

$$
\begin{aligned}
-\sqrt{3}-(2 \sqrt{3}-3) i & =r e^{i \theta} \\
& =r(\cos (\theta)+i \sin (\theta)) \\
& =(2 \sqrt{6-3 \sqrt{3}})(\cos (13 \pi / 12)+i \sin (13 \pi / 12))
\end{aligned}
$$

