Using the fact that $\tan(\pi/12) = 2 - \sqrt{3}$, find the polar coordinates of

$$-\sqrt{3} - (2\sqrt{3} - 3)i$$
.

Solution: First we compute the length of the given complex number:

$$r = |-\sqrt{3} - (2\sqrt{3} - 3)i|$$

$$= \sqrt{(-\sqrt{3})^2 + (-(2\sqrt{3} - 3))^2}$$

$$= \sqrt{3 + 4(3) - 12\sqrt{3} + 9}$$

$$= \sqrt{24 - 12\sqrt{3}}$$

$$= 2\sqrt{6 - 3\sqrt{3}}$$

Now, to compute θ , the angle of rotation with respect to the x-axis, we perform:

$$\arctan\left(\frac{y}{x}\right) = \arctan\left(\frac{-(2\sqrt{3}-3)}{-\sqrt{3}}\right)$$
$$= \arctan\left(\frac{\sqrt{3}(2-\sqrt{3})}{\sqrt{3}}\right)$$
$$= \arctan(2-\sqrt{3})$$
$$= \pi/12$$

Thus, since our original complex point is in the third quadrant, we have that $\theta = \pi + \pi/12 = 13\pi/12$. Hence, in polar coordinates,

$$-\sqrt{3} - (2\sqrt{3} - 3)i = re^{i\theta}$$

$$= r(\cos(\theta) + i\sin(\theta))$$

$$= (2\sqrt{6 - 3\sqrt{3}})(\cos(13\pi/12) + i\sin(13\pi/12))$$