Find the number of integer solutions to

$$
\begin{aligned}
& x \equiv 5 \quad \bmod 17 \\
& 2 x \equiv 3 \bmod 11
\end{aligned}
$$

with $-1500<x<1500$.
Solution: Notice that $2 \cdot 6 \equiv 1 \bmod 11$ and so multiplying both sides of equation 2 above by 6 gives the equivalent system

$$
\begin{array}{ll}
x \equiv 5 & \bmod 17 \\
x \equiv 7 & \bmod 11
\end{array}
$$

The Chinese Remainder Theorem now says that there is a unique solution modulo $17 \cdot 11=187$ (valid since $\operatorname{gcd}(11,17)=1)$. Call this solution a. Hence all solutions are given by

$$
x=a+187 k
$$

where k is an integer. To find a, we use the fact that $x=5+17 \ell$ for some integer ℓ and plug into the second equation to yield

$$
5+17 \ell \equiv 7 \quad \bmod 11
$$

Simplifying gives

$$
6 \ell \equiv 2 \quad \bmod 11
$$

By Congruences and Divisibility, we can divide by 2 to get

$$
3 \ell \equiv 1 \quad \bmod 11
$$

Multiplying by 4 yields

$$
\ell \equiv 12 \ell \equiv 4 \quad \bmod 11
$$

Hence $\ell=4+11 m$ for some integer m. Plugging back in yields $x=5+17(4+$ $11 m$) giving $x=73+187 m$. Since

$$
-1500<x<1500
$$

we have that

$$
-1500<73+187 m<1500
$$

Simplifying yields

$$
-1573<187 m<1427
$$

and once more:

$$
-8.3<m<7.6
$$

Hence there are 16 integers.

