Solve the congruence equation in \mathbb{Z}_{11} given by

$$
\begin{aligned}
& {[3][x]+[4][y]=[5]} \\
& {[5][x]+[2][y]=[1] .}
\end{aligned}
$$

Solution: Changing to a congruence gives

$$
\begin{array}{ll}
3 x+4 y \equiv 5 & \bmod 11 \\
5 x+2 y \equiv 1 & \bmod 11
\end{array}
$$

Taking double the second equation from the first (that is, eliminating y) gives

$$
-7 x \equiv 3 \quad \bmod 11
$$

Here, we can find the inverse of (-7) by either guessing or using the Extended Euclidean Algorithm. Since we only have to try 10 numbers at worst let's guess. Notice that

$$
-7(3) \equiv-21 \equiv-21+2(11) \equiv 1 \quad \bmod 11
$$

Thus, multiplying the previous congruence by 3 gives

$$
x \equiv 9 \quad \bmod 11
$$

Substituting back into the first equation gives

$$
\begin{aligned}
3(9)+4 y & \equiv 5 \quad \bmod 11 \\
27+4 y & \equiv 5 \quad \bmod 11 \\
5+4 y & \equiv 5 \quad \bmod 11 \\
4 y & \equiv 0 \quad \bmod 11 \\
4^{-1} \cdot 4 y & \equiv 4^{-1} \cdot 0 \quad \bmod 11 \quad \text { Inverse exists since } \operatorname{gcd}(4,11)=1 \\
y & \equiv 0 . \quad \bmod 11
\end{aligned}
$$

Hence, the solution is given by $[x]=[9]$ and $[y]=[0]$.

