Does 7 divide $x^{12}+x^{2}+3$ for some integer x.
Solution: We are trying to determine if

$$
x^{12}+x^{2}+3 \equiv 0 \quad \bmod 7
$$

Let's use Fermat's Little Theorem which states that

$$
a^{6} \equiv 1 \quad \bmod 7
$$

whenever $7 \nmid a$.
If $7 \mid x$, then $x \equiv 0 \bmod 7$

$$
x^{12}+x^{2}+3 \equiv(0)^{12}+(0)^{2}+3 \equiv 3 \quad \bmod 7
$$

Now, we suppose that $7 \nmid x$. By FLT, we have that $x^{6} \equiv 1 \bmod 7$ and squaring gives $x^{12} \equiv 1 \bmod 7$. Substituting gives

$$
x^{12}+x^{2}+3 \equiv 1+x^{2}+3 \equiv x^{2}+4 \quad \bmod 7
$$

Trying all 6 values gives

$$
\begin{array}{rr}
(\pm 1)^{2}+4 \equiv 5 & \bmod 7 \\
(\pm 2)^{2}+4 \equiv 1 & \bmod 7 \\
(\pm 3)^{2}+4 \equiv 6 & \bmod 7
\end{array}
$$

Since none of the above values are 0 , we have that $7 \nmid x^{12}+x^{2}+3$.

