Let a, b, c be integers such that $c \mid a b$. Show that $c \mid \operatorname{gcd}(a, c) \operatorname{gcd}(b, c)$.
Solution: By Bezout's Lemma (EEA) there exists integers x and y such that

$$
a x+c y=\operatorname{gcd}(a, c)
$$

Using Bezout's Lemma (EEA) again, there exist integers u and v such that

$$
b u+c v=\operatorname{gcd}(b, c)
$$

Multiply the previous two equations together to see that

$$
a b x u+a c x v+b c u y+c^{2} y v=\operatorname{gcd}(a, c) \operatorname{gcd}(b, c)
$$

Write $c k=a b$ for some integer k. Substituting above and factoring yields

$$
c(k x u+a x v+b u y+c y v)=\operatorname{gcd}(a, c) \operatorname{gcd}(b, c) .
$$

Thus $c \mid \operatorname{gcd}(a, c) \operatorname{gcd}(b, c)$.

