Show that $\operatorname{gcd}(n!+1,(n+1)!+1)=1$

Solution: Using GCDWR, we see that since

$$
(n+1)!+1=(n+1)(n!+1)-n
$$

then $\operatorname{gcd}(n!+1,(n+1)!+1)=\operatorname{gcd}(n!+1,-n)$. Let $d=\operatorname{gcd}(n!+1,-n)$. Then $d \mid(n!+1)$ and $d \mid(-n)$ hence $d \mid n$. This implies that $d \mid(n!)$. Thus, Divisibility of Integer Combinations gives us that, $d \mid(n!+1)-n!=1$. Hence $d=1$. Thus, $\operatorname{gcd}(n!+1,(n+1)!+1)=d=1$.

