Show that gcd(n! + 1, (n + 1)! + 1) = 1

Solution: Using GCDWR, we see that since

$$(n+1)! + 1 = (n+1)(n!+1) - n$$

then gcd(n! + 1, (n + 1)! + 1) = gcd(n! + 1, -n). Let d = gcd(n! + 1, -n). Then $d \mid (n!+1)$ and $d \mid (-n)$ hence $d \mid n$. This implies that $d \mid (n!)$. Thus, Divisibility of Integer Combinations gives us that, $d \mid (n!+1) - n! = 1$. Hence d = 1. Thus, gcd(n! + 1, (n + 1)! + 1) = d = 1.