Find $\operatorname{gcd}(65,40)$ and find integers x and y such that $65 x+40 y=\operatorname{gcd}(65,40)$

$$
\begin{align*}
& 65=40(1)+25 \tag{1}\\
& 40=25(1)+15 \tag{2}\\
& 25=15(1)+10 \tag{3}\\
& 15=10(1)+5 \tag{4}\\
& 10=5(2)+0 \tag{5}
\end{align*}
$$

Thus, the greatest common divisor of 65 and 40 is 5 .

$$
\begin{aligned}
5 & =15+10(-1) & & \text { By }(4) \\
& =15+(25+15(-1))(-1) & & \text { By }(3) \\
& =25(-1)+15(2) & & \\
& =25(-1)+(40+25(-1))(2) & & \text { By }(2) \\
& =40(2)+25(-3) & & \text { By }(1) \\
& =40(2)+(65+40(-1))(-3) & & \\
& =65(-3)+40(5) & &
\end{aligned}
$$

Therefore, integers satisfying the original equations are $x=-3$ and $y=5$.

