Let $\{f_n\}$ be the Fibonacci sequence (that is, $f_1 = 1$, $f_2 = 1$ and $f_n = f_{n-1} + f_{n-2}$ for all $n \ge 3$). Show that $f_n < \left(\frac{7}{4}\right)^n$ for all $n \in \mathbb{N}$.

Solution: We proceed by strong induction.

Base Case: For n = 1, we have that $f_1 = 1 < \frac{7}{4}$.

For n = 2, we have that $f_2 = 1 < \frac{49}{16} = \left(\frac{7}{4}\right)^2$.

Induction Hypothesis: Assume that $f_i < \left(\frac{7}{4}\right)^i$ for all $1 \le i \le k$ for some $k \in \mathbb{N}$ and $k \ge 2$.

Induction Step: Now, we want $f_{k+1} < \left(\frac{7}{4}\right)^{k+1}$. For k+1, we have

$$f_{k+1} = f_k + f_{k-1}$$
Valid since $k + 1 \ge 3$

$$< \left(\frac{7}{4}\right)^k + \left(\frac{7}{4}\right)^{k-1}$$
Induction Hypothesis
$$= \left(\frac{7}{4}\right)^{k-1} \left(\frac{7}{4} + 1\right)$$

$$= \left(\frac{7}{4}\right)^{k-1} \left(\frac{11}{4}\right)$$

$$< \left(\frac{7}{4}\right)^{k-1} \frac{49}{16}$$

$$= \left(\frac{7}{4}\right)^{k-1} \frac{7^2}{4^2}$$

$$= \left(\frac{7}{4}\right)^{k+1}$$

Thus, $f_{k+1} < \left(\frac{7}{4}\right)^{k+1}$ and hence, the statement $f_n < \left(\frac{7}{4}\right)^n$ is true for all $n \in \mathbb{N}$ by Strong Induction.