Let $\left\{f_{n}\right\}$ be the Fibonacci sequence (that is, $f_{1}=1, f_{2}=1$ and $f_{n}=$ $f_{n-1}+f_{n-2}$ for all $n \geq 3$). Show that $f_{n}<\left(\frac{7}{4}\right)^{n}$ for all $n \in \mathbb{N}$.

Solution: We proceed by strong induction.
Base Case: For $n=1$, we have that $f_{1}=1<\frac{7}{4}$.
For $n=2$, we have that $f_{2}=1<\frac{49}{16}=\left(\frac{7}{4}\right)^{2}$.
Induction Hypothesis: Assume that $f_{i}<\left(\frac{7}{4}\right)^{i}$ for all $1 \leq i \leq k$ for some $k \in \mathbb{N}$ and $k \geq 2$.

Induction Step: Now, we want $f_{k+1}<\left(\frac{7}{4}\right)^{k+1}$. For $k+1$, we have

$$
\begin{array}{rlr}
f_{k+1} & =f_{k}+f_{k-1} & \\
& <\left(\frac{7}{4}\right)^{k}+\left(\frac{7}{4}\right)^{k-1} & \text { Valid since } k+1 \geq 3 \\
& =\left(\frac{7}{4}\right)^{k-1}\left(\frac{7}{4}+1\right) & \\
& =\left(\frac{7}{4}\right)^{k-1}\left(\frac{11}{4}\right) & \\
& <\left(\frac{7}{4}\right)^{k-1} \frac{49}{16} & \\
& =\left(\frac{7}{4}\right)^{k-1} \frac{7^{2}}{4^{2}} & \\
& =\left(\frac{7}{4}\right)^{k+1} &
\end{array}
$$

Thus, $f_{k+1}<\left(\frac{7}{4}\right)^{k+1}$ and hence, the statement $f_{n}<\left(\frac{7}{4}\right)^{n}$ is true for all $n \in \mathbb{N}$ by Strong Induction.

