Let

$$
S=\mathbb{R} \backslash\{-1\}=\mathbb{R}-\{-1\} \quad \text { and } \quad T=\mathbb{R} \backslash\{2\}=\mathbb{R}-\{2\}
$$

Show that the function $f: S \rightarrow T$ defined by

$$
f(x)=\frac{2 x+1}{x+1}
$$

is injective and surjective (hence bijective or a bijection).
Solution: Let $x, y \in S$ be such that $f(x)=f(y)$. Then,

$$
\begin{aligned}
\frac{2 x+1}{x+1} & =\frac{2 y+1}{y+1} \\
(2 x+1)(y+1) & =(2 y+1)(x+1) \\
2 x y+2 x+y+1 & =2 x y+2 y+x+1 \\
x & =y
\end{aligned}
$$

To show surjectivity, let $y \in T$. Let $x=\frac{y-1}{2-y}$. Notice that $x \in \mathbb{R}$ since $y \neq 2$.
Further, notice that $x \neq-1$, for otherwise, $-1=\frac{y-1}{2-y}$ and so $y-2=y-1$ hence $-2=-1$, a contradiction. Thus, $x \in S$ and,

$$
\begin{aligned}
f(x) & =\frac{2 x+1}{x+1} \\
& =\frac{2\left(\frac{y-1}{2-y}\right)+1}{\frac{y-1}{2-y}+1} \\
& =\frac{\frac{2 y-2+2-y}{2-y}}{\frac{y-1+2-y}{2-y}} \\
& =y
\end{aligned}
$$

Napkin Computation:

$$
\begin{aligned}
\frac{2 x+1}{x+1} & =y \\
2 x+1 & =x y+y \\
2 x-x y & =y-1 \\
x & =\frac{y-1}{2-y}
\end{aligned}
$$

