Show that there is a unique real number y such that $x y=x$ for all real numbers x.

Solution: Notice that $y=1$ is a possible value for y. Now, suppose there are two values, say y and z such that $x y=x$ and $x z=x$ for all real x. Subtracting yields $x y-x z=0$. Factoring gives $x(y-z)=0$ which holds for all real x. In particular, taking x to be nonzero, we see that $y-z=0$ and hence $y=z$.

Show that there is a unique real number y such that $x+y=x$ for all real numbers x.

Solution: Notice that $y=0$ is a possible solution. Now, suppose that there exists a $y, z \in \mathbb{R}$ such that $x+y=x$ and $x+z=x$. Subtracting these yields $y-z=0$ and hence $y=z$.

