9) Show that for every integer a, we have that $a^{561} \equiv a(\bmod 561)$ even though 561 is not prime.

Solution: Notice that $561=3 \cdot 11 \cdot 17$. Our idea is to compute a^{561} modulo these three primes and use CRT to stitch the solutions together. Notice that if $\operatorname{gcd}(a, 3)=1$, then using FLT gives

$$
a^{561} \equiv\left(a^{2}\right)^{280} a \equiv a(\bmod 3)
$$

and if $3 \mid a$ then $a^{561} \equiv 0 \equiv a(\bmod 3)$. Next, if $\operatorname{gcd}(a, 11)=1$, then using FLT gives

$$
a^{561} \equiv\left(a^{10}\right)^{56} a \equiv a(\bmod 11)
$$

and if $11 \mid a$ then $a^{561} \equiv 0 \equiv a(\bmod 11)$. Lastly, if $\operatorname{gcd}(a, 17)=1$, then using FLT gives

$$
a^{561} \equiv\left(a^{16}\right)^{35} a \equiv a(\bmod 17)
$$

and if $17 \mid a$ then $a^{561} \equiv 0 \equiv a(\bmod 17)$. In all cases, we have the following simultaneous congruences

$$
\begin{aligned}
a^{561} & \equiv a(\bmod 3) \\
a^{561} & \equiv a(\bmod 11) \\
a^{561} & \equiv a(\bmod 17)
\end{aligned}
$$

Hence, by the generalized Chinese Remainder Theorem (or by SM), we must have that

$$
a^{561} \equiv a(\bmod 3 \cdot 11 \cdot 17)
$$

which is exactly what we wanted to show.

