7) State the Rational Roots Theorem

Let $f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0} \in \mathbb{Z}[x]$. If $r=\frac{a}{b}$ is a rational root of $f(x)$, then $a \mid a_{0}$ and $b \mid a_{n}$.

Let $f(x)=4 x^{4}+8 x^{3}+9 x^{2}+5 x+1$. Determine the rational roots of $f(x)$.
Solution: By the theorem, we have that the only possibilities are $r= \pm 1, \pm 1 / 2, \pm 1 / 4$. We can plug in each of these values to see that

$$
\begin{aligned}
f(1) & =27 \\
f(-1) & =1 \\
f(1 / 2) & =7 \\
f(-1 / 2) & =0 \\
f(1 / 4) & =189 / 64 \\
f(-1 / 4) & =13 / 64
\end{aligned}
$$

Hence only $-1 / 2$ is a rational root of $f(x)$.

Factor $f(x)=4 x^{4}+8 x^{3}+9 x^{2}+5 x+1$ over $\mathbb{Q}[x], \mathbb{R}[x], \mathbb{C}[x]$ and $\mathbb{Z}_{5}[x]$.
By the above, we know that $2 x+1$ is a factor of $f(x)$ using the Factor Theorem. Hence, using long division:

we have that $f(x)=(2 x+1)\left(2 x^{3}+3 x^{2}+3 x+1\right)$. From the previous part we know that the only possible rational root that $2 x^{3}+3 x^{2}+3 x+1$ can have is once again $-1 / 2$. We close our eyes and hope that this is a root:

$$
2(-1 / 2)^{3}+3(-1 / 2)^{2}+3(-1 / 2)+1=-2 / 8+3 / 4-3 / 2+1=2 / 4-3 / 2+1=0
$$

Huzzah! Thus, another long division

implies that $f(x)=(2 x+1)^{2}\left(x^{2}+x+1\right)$. The roots of this last equation are given by the quadratic formula:

$$
x=\frac{-1 \pm \sqrt{1^{2}-4(1)(1)}}{2}=\frac{-1 \pm \sqrt{3} i}{2}
$$

These roots are imaginary and thus the factorization over \mathbb{Q} and \mathbb{R} is given by

$$
f(x)=(2 x+1)^{2}\left(x^{2}+x+1\right)
$$

and over \mathbb{C} by

$$
f(x)=(2 x+1)^{2}(x-(1+\sqrt{3} i) / 2)(x-(1+\sqrt{3} i) / 2) .
$$

Finally, over \mathbb{Z}_{5}, notice that if the last term factors, it must have a rational root (this was Q7 of the last homework!) By the factor theorem, it must have a root if it factors.

Testing the five values gives:

$$
\begin{aligned}
& 0^{2}+0+1=1 \\
& 1^{2}+1+1=3 \\
& 2^{2}+2+1=2 \\
& 3^{2}+3+1=3 \\
& 4^{2}+4+1=1
\end{aligned}
$$

and thus it has no root. Hence over \mathbb{Z}_{5}, the factorization is $f(x)=(2 x+1)^{2}\left(x^{2}+x+1\right)$.

