6) Determine all complex numbers (in polar or standard form) of the equation

$$
z^{6}+2 i z^{3}-4=0 .
$$

Solution: Let $w=z^{3}$ so that $w^{2}+2 i w-4=0$. Using the quadratic formula yields

$$
w=\frac{-2 i \pm \sqrt{(2 i)^{2}-4(1)(-4)}}{2(1)}=\frac{-2 i \pm \sqrt{12}}{2}=\frac{-2 i \pm 2 \sqrt{3}}{2}=-i \pm \sqrt{3}
$$

Since $z^{3}=w$, it now suffices to solve $z^{3}=-i-\sqrt{3}$ and $z^{3}=-i+\sqrt{3}$. Notice that $|-i \pm \sqrt{3}|=\sqrt{(-1)^{2}+( \pm \sqrt{3})^{2}}=2$ and thus, we are solving the two equations given by

$$
z^{3}=2\left(\frac{ \pm \sqrt{3}}{2}-\frac{i}{2}\right)
$$

By the diagram,


We see that the two equations are equal to

$$
z^{3}=2(\cos (7 \pi / 6)+i \sin (7 \pi / 6)) \quad z^{3}=2(\cos (11 \pi / 6)+i \sin (11 \pi / 6))
$$

By CNRT, the six solutions are given by:

$$
\begin{aligned}
& z=\sqrt[3]{2}\left(\cos \left(\frac{7 \pi / 6}{3}\right)+i \sin \left(\frac{7 \pi / 6}{3}\right)\right) \\
& z=\sqrt[3]{2}\left(\cos \left(\frac{7 \pi / 6+2 \pi}{3}\right)+i \sin \left(\frac{7 \pi / 6+2 \pi}{3}\right)\right) \\
& z=\sqrt[3]{2}\left(\cos \left(\frac{7 \pi / 6+4 \pi}{3}\right)+i \sin \left(\frac{7 \pi / 6+4 \pi}{3}\right)\right) \\
& z=\sqrt[3]{2}\left(\cos \left(\frac{11 \pi / 6}{3}\right)+i \sin \left(\frac{11 \pi / 6}{3}\right)\right) \\
& z=\sqrt[3]{2}\left(\cos \left(\frac{11 \pi / 6+2 \pi}{3}\right)+i \sin \left(\frac{11 \pi / 6+2 \pi}{3}\right)\right) \\
& z=\sqrt[3]{2}\left(\cos \left(\frac{11 \pi / 6+4 \pi}{3}\right)+i \sin \left(\frac{11 \pi / 6+4 \pi}{3}\right)\right)
\end{aligned}
$$

