5) Consider the RSA scheme with public key $(e, n)=(23,407)$.

Using this scheme, encrypt the message $M=321$.
To encrypt this message, we compute M^{e} and reduce modulo n to a value between 1 and n.

$$
C \equiv M^{e} \equiv 321^{23}(\bmod 407)
$$

This value is difficult to compute without a calculator. However we can try some sort of splitting the modulus technique. Notice that $407=11 \cdot 37$. Thus, it suffices to compute (we used the fact that $30 \cdot 11=330$ so $321 \equiv 2(\bmod 11)$)

$$
C \equiv 321^{23} \equiv 2^{23} \equiv\left(2^{10}\right)^{2} 2^{3} \equiv(1) 8 \equiv 8 \equiv 30(\bmod 11) \quad \text { By FLT }
$$

and (using that $37 \cdot 3=111$ and $37 \cdot 4=148$ and $37 \cdot 5=185$)

$$
\begin{aligned}
C & \equiv 321^{23} \equiv 25^{23} \equiv 5^{46} \equiv 5^{36} 5^{10} \equiv 5^{10}(\bmod 37) \quad \text { By FLT } \\
& \equiv 125^{3} \cdot 5 \equiv 14^{3} \cdot 5 \equiv 196 \cdot 14 \cdot 5(\bmod 37) \\
& \equiv 11 \cdot 70 \equiv 11 \cdot(-4) \equiv-44 \equiv 30(\bmod 37)
\end{aligned}
$$

Now, combining using CRT shows that $C \equiv 30(\bmod 407)$ and hence that $C=30$.

Determine the private key corresponding to the public key $(23,407)$.
Above, we shows that $407=11 \cdot 37$ and hence $\phi(n)=(p-1)(q-1)=10 \cdot 36 \equiv 360$. Thus, we are trying to solve $e d \equiv 1(\bmod \phi(n))$ or in other words

$$
23 d \equiv 1(\bmod 360)
$$

This is equivalent to

$$
23 d+360 k=1
$$

for some integer k. We will solve this using EEA:

d	k	r
0	1	360
1	0	23
-15	1	15
16	-1	8
-31	2	7
47	-3	1

Hence $23(47)+360(-3)=1$ and thus $d=47$ is the inverse.

