4) If $a, b, c \in \mathbb{Z}$ with $c \mid a b$ and $\operatorname{gcd}(a, c)=1$ then $c \mid b$.

Solution: Since $\operatorname{gcd}(a, c)=1$, we may apply Bezout's Lemma (EEA) to see that there exist integers x, y such that

$$
a x+c y=1
$$

Multiplying through by b gives

$$
a b x+c b y=b
$$

Since $c \mid a b$ and $c \mid c b y$, by DIC we see that $c \mid b$ as required.

Prove: For integers a, b, c such that $\operatorname{gcd}(a, b)=1$ if $a \mid c$ and $b \mid c$ then $a b \mid c$.

Solution: By definition, there exist integers m and n such that $a m=c$ and $b n=c$. Then, by Bezout's Lemma,

$$
a x+b y=1
$$

Multiplying by $m n$ yields

$$
a m n x+b m n y=m n
$$

Substituting yields

$$
c n x+c m y=m n
$$

Hence by DIC, $c \mid m n$ so $c k=m n$ for some integer k. Now, $a m=c$ implies that $a m k=c k=m n$ and thus, $a k=n$ (or $m=0$ in which case $c=0$ and the claim holds). Multiplying by b yields $a b k=b n=c$ and hence $a b \mid c$ as required.

