3) Let $a_{1}=2, a_{2}=3$ and $a_{n}=3 a_{n-1}-2 a_{n-2}$ for $n \geq 3$. Show that $a_{n}=2^{n-1}+1$ for $n \geq 1$.

The proof is by Strong Induction. For $n=1$ and $n=2$,

$$
\begin{gathered}
a_{1}=2=2^{1-1}+1 \\
a_{2}=3=2+1=2^{2-1}+1
\end{gathered}
$$

Induciton Hypothesis: Assume that $a_{i}=2^{i-1}+1$ for all $i \in\{1,2, \ldots, k\}$ for some $k \in \mathbb{N}$, $k \geq 2$.

Induction Conclusion: Prove that $a_{k+1}=2^{k}+1$. Since $k+1 \geq 3$, I can use the recursive definition to see that:

$$
\begin{aligned}
a_{k+1} & =3 a_{k}-2 a_{k-1} \\
& =3\left(2^{k-1}+1\right)-2\left(2^{k-2}+\right. \\
& =3 \cdot 2^{k-1}+3-2^{k-1}-2 \\
& =2 \cdot 2^{k-1}+1 \\
& =2^{k}+1
\end{aligned}
$$

$$
=3\left(2^{k-1}+1\right)-2\left(2^{k-2}+1\right) \quad \mathrm{IH}
$$

Thus, the statement is true for $n=k+1$ and the claim is proven by POSI.

