2) Let P and Q be statements. Define the statement $P \circ Q$ by the following truth table:

Р	Q	$P \circ Q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	Т

Show that $P \circ Q$ is equivalent to the statement $\neg (P \wedge Q)$

Solution: Creating a truth table yields:

Р	Q	$P \circ Q$	$P \wedge Q$	$\neg (P \land Q)$
Т	Т	F	Т	F
Т	F	Т	F	Т
F	Т	Т	F	Т
F	F	Т	\mathbf{F}	Т

Since the third and the fifth columns are the same, the two headings are logically equivalent

(b) Is $P \wedge Q$ equivalent to $(P \circ Q) \circ (Q \circ P)$?

Solution: For part (b), We use a sequence of logical equivalences to see that:

$$(P \circ Q) \circ (Q \circ P) \equiv (\neg (P \land Q)) \circ (\neg (Q \land P)) \qquad \text{By part (a)}$$
$$\equiv (\neg P \lor \neg Q) \circ (\neg Q \lor \neg P) \qquad \text{By DeMorgan's Laws}$$
$$\equiv \neg ((\neg P \lor \neg Q) \land (\neg Q \lor \neg P)) \qquad \text{By part (a)}$$
$$\equiv \neg (\neg P \lor \neg Q) \lor \neg (\neg Q \lor \neg P) \qquad \text{By DeMorgan's Laws}$$
$$\equiv (P \land Q) \lor (Q \land P) \qquad \text{By DeMorgan's Laws}$$
$$\equiv (P \land Q) \lor (P \land Q)$$
$$\equiv P \land Q$$