Carmen's Core Concepts (Math 135)

Carmen Bruni

University of Waterloo

Week 9 Part 2

- 2 \mathbb{C} is a field
- 3 Complex Conjugation
- Properties of Modulus
- 5 Proof of the Triangle Inequality
- 6 Polar Coordinates
- Converting From Standard to Polar Form
- 8 Converting From Standard to Polar Form

Definition: A complex numbers (in standard form) is an expression of the form x + yi where $x, y \in \mathbb{R}$ and i is the imaginary unit. Denote the set of complex numbers by

$$\mathbb{C} := \{x + yi : x, y \in \mathbb{R}\}$$

Example: 1 + 2i, 3i, $\sqrt{13} + \pi i$, 2 (or 2 + 0i).

Definition: Two complex numbers z = x + yi and w = u + vi are equal if and only if x = u and y = v.

$\mathbb C$ is a field

We turn $\mathbb C$ into a commutative ring by defining

The multiplication operation above gives us that $i^2 = -1$ and with this, we can remember the multiplication operation by expanding the product as we would before.

$$(x + yi)(u + vi) = xu + xvi + yiu + yivi$$
$$= xu + (xv + yu)i + yvi^{2}$$
$$= xu - yv + (xv + uy)i$$

We note that $\mathbb C$ is a field by observing that the multiplicative inverse of a nonzero complex numbers is

$$(x+yi)^{-1} = \frac{x}{x^2+y^2} - \frac{y}{x^2+y^2}i$$

Complex Conjugation

Definition: The complex conjugate of a complex number z = x + yi is $\overline{z} := x - yi$.

Proposition: (Properties of Conjugates (PCJ)) Let $z, w \in \mathbb{C}$. Then

 $\overline{z + w} = \overline{z} + \overline{w}$ $\overline{zw} = \overline{z} \cdot \overline{w}$ $\overline{\overline{z}} = z$ $z + \overline{z} = 2\Re(z)$ $z - \overline{z} = 2i\Im(z)$.

Proof:

3
$$\overline{\overline{z}} = \overline{x + yi} = \overline{x - yi} = x + yi = z$$

4 $z + \overline{z} = x + yi + x - yi = 2x = 2\Re(z)$
5 $z - \overline{z} = x + yi - (x - yi) = 2yi = 2i\Im(z)$

Definition: The modulus of z = x + yi is the nonnegative real number

$$|z| = |x + yi| := \sqrt{x^2 + y^2}$$

Proposition: (Properties of Modulus (PM))

- $\boxed{|\overline{z}| = |z|}$
- $z\overline{z} = |z|^2$

$$|z| = 0 \Leftrightarrow z = 0$$

- |zw| = |z||w|
- **5** $|z+w| \le |z| + |w|$ (This is called the triangle inequality)

Proof of the Triangle Inequality

To prove
$$|z+w| \le |z|+|w|$$
, it suffices to prove that
$$|z+w|^2 \le (|z|+|w|)^2 = |z|^2+2|zw|+|w|^2$$

since the modulus is a positive real number. Using the Properties of Modulus and the Properties of Conjugates, we have

$$|z + w|^{2} = (z + w)(\overline{z + w}) \qquad PM$$

= $(z + w)(\overline{z} + \overline{w}) \qquad PCJ$
= $z\overline{z} + z\overline{w} + w\overline{z} + w\overline{w}$
= $|z|^{2} + z\overline{w} + \overline{z\overline{w}} + |w|^{2} \qquad PCJ \text{ and } PM$

Now, from Properties of Conjugates, we have that

$$z\bar{w} + \overline{z\bar{w}} = 2\Re(z\bar{w}) \le 2|z\bar{w}| = 2|zw|$$

and hence

$$|z + w|^2 = |z|^2 + z\bar{w} + \overline{z\bar{w}} + |w|^2 \le |z|^2 + 2|zw| + |w|^2$$

completing the proof.

Polar Coordinates

A point in the plane corresponds to a length and an angle:

Example: $(r, \theta) = (3, \frac{\pi}{4})$ corresponds to

$$3\cos(\pi/4) + i(3\sin(\pi/4)) = \frac{3}{\sqrt{2}} + \frac{3}{\sqrt{2}}i$$

via the picture

Given z = x + yi, we see that

$$r = |z| = \sqrt{x^2 + y^2}$$

$$\theta = \arccos(x/r) = \arcsin(y/r) = \arctan(y/x)$$

Note: The angle θ might be $\arctan(y/x)$ OR $\pi + \arctan(y/x)$ depending on which quadrant we are in.

Given z = x + yi, we see that

$$r = |z| = \sqrt{x^2 + y^2}$$

$$\theta = \arccos(x/r) = \arcsin(y/r) = \arctan(y/x)$$

Note: The angle θ might be $\arctan(y/x)$ OR $\pi + \arctan(y/x)$ depending on which quadrant we are in.

Example: Write $z = \sqrt{6} + \sqrt{2}i$ using polar coordinates. What about -z?

Example: Write $z = \sqrt{6} + \sqrt{2}i$ using polar coordinates. What about -z?

Solution: Note that $r = \sqrt{\sqrt{6}^2 + \sqrt{2}^2} = \sqrt{8} = 2\sqrt{2}$. Further,

$$\arctan(\sqrt{2}/\sqrt{6}) = \arctan 1/\sqrt{3} = \pi/6$$

Thus $(r, \theta) = (2\sqrt{2}, \pi/6)$. For -z, the angle and radius we get above is the same however we are now in the third quadrant so the coordinates are $(r, \theta) = (2\sqrt{2}, 7\pi/6)$