Carmen's Core Concepts (Math 135)

Carmen Bruni

University of Waterloo

Week 9 Part 2

(1) Complex Numbers
(2) \mathbb{C} is a field
(3) Complex Conjugation
(4) Properties of Modulus
(5) Proof of the Triangle Inequality
(6) Polar Coordinates
(7) Converting From Standard to Polar Form
(8) Converting From Standard to Polar Form

Complex Numbers

Definition: A complex numbers (in standard form) is an expression of the form $x+y i$ where $x, y \in \mathbb{R}$ and i is the imaginary unit. Denote the set of complex numbers by

$$
\mathbb{C}:=\{x+y i: x, y \in \mathbb{R}\}
$$

Example: $1+2 i, 3 i, \sqrt{13}+\pi i, 2($ or $2+0 i)$.
Definition: Two complex numbers $z=x+y i$ and $w=u+v i$ are equal if and only if $x=u$ and $y=v$.

\mathbb{C} is a field

We turn \mathbb{C} into a commutative ring by defining
(1) $(x+y i) \pm(u+v i):=(x \pm u)+(y \pm v) i$
(2) $(x+y i)(u+v i):=(x u-v y)+(x v+u y) i$

The multiplication operation above gives us that $i^{2}=-1$ and with this, we can remember the multiplication operation by expanding the product as we would before.

$$
\begin{aligned}
(x+y i)(u+v i) & =x u+x v i+y i u+y i v i \\
& =x u+(x v+y u) i+y v i^{2} \\
& =x u-y v+(x v+u y) i
\end{aligned}
$$

We note that \mathbb{C} is a field by observing that the multiplicative inverse of a nonzero complex numbers is

$$
(x+y i)^{-1}=\frac{x}{x^{2}+y^{2}}-\frac{y}{x^{2}+y^{2}} i
$$

Complex Conjugation

Definition: The complex conjugate of a complex number $z=x+y i$ is $\bar{z}:=x-y i$.

Proposition: (Properties of Conjugates (PCJ)) Let $z, w \in \mathbb{C}$. Then

$$
\begin{aligned}
& 1 \overline{z+w}=\bar{z}+\bar{w} \\
& 2 \overline{z w}=\bar{z} \cdot \bar{w} \\
& 3 \overline{\bar{z}}=z \\
& 4 z+\bar{z}=2 \Re(z) \\
& 5 z-\bar{z}=2 i \Im(z) .
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& 3 \overline{\bar{z}}=\overline{\overline{x+y i}}=\overline{x-y i}=x+y i=z \\
& 4 z+\bar{z}=x+y i+x-y i=2 x=2 \Re(z) \\
& 5 z-\bar{z}=x+y i-(x-y i)=2 y i=2 i \Im(z)
\end{aligned}
$$

Properties of Modulus

Definition: The modulus of $z=x+y i$ is the nonnegative real number

$$
|z|=|x+y i|:=\sqrt{x^{2}+y^{2}}
$$

Proposition: (Properties of Modulus (PM))
(1) $|\bar{z}|=|z|$
(2) $z \bar{z}=|z|^{2}$
(3) $|z|=0 \Leftrightarrow z=0$
(9) $|z w|=|z||w|$
(3) $|z+w| \leq|z|+|w|$ (This is called the triangle inequality)

Proof of the Triangle Inequality

To prove $|z+w| \leq|z|+|w|$, it suffices to prove that

$$
|z+w|^{2} \leq(|z|+|w|)^{2}=|z|^{2}+2|z w|+|w|^{2}
$$

since the modulus is a positive real number. Using the Properties of Modulus and the Properties of Conjugates, we have

$$
\begin{aligned}
|z+w|^{2} & =(z+w)(\overline{z+w}) & & \text { PM } \\
& =(z+w)(\bar{z}+\bar{w}) & & \text { PCJ } \\
& =z \bar{z}+z \bar{w}+w \bar{z}+w \bar{w} & & \\
& =|z|^{2}+z \bar{w}+\overline{z \bar{w}}+|w|^{2} & & \text { PCJ and PM }
\end{aligned}
$$

Now, from Properties of Conjugates, we have that

$$
z \bar{w}+\overline{z \bar{w}}=2 \Re(z \bar{w}) \leq 2|z \bar{w}|=2|z w|
$$

and hence

$$
|z+w|^{2}=|z|^{2}+z \bar{w}+\overline{z \bar{w}}+|w|^{2} \leq|z|^{2}+2|z w|+|w|^{2}
$$

completing the proof.

Polar Coordinates

A point in the plane corresponds to a length and an angle:

Example: $(r, \theta)=\left(3, \frac{\pi}{4}\right)$ corresponds to

$$
3 \cos (\pi / 4)+i(3 \sin (\pi / 4))=\frac{3}{\sqrt{2}}+\frac{3}{\sqrt{2}} i
$$

via the picture

Converting From Standard to Polar Form

Given $z=x+y i$, we see that

$$
\begin{gathered}
r=|z|=\sqrt{x^{2}+y^{2}} \\
\theta=\arccos (x / r)=\arcsin (y / r)=\arctan (y / x)
\end{gathered}
$$

Note: The angle θ might be $\arctan (y / x)$ OR $\pi+\arctan (y / x)$ depending on which quadrant we are in.

Converting From Standard to Polar Form

Given $z=x+y i$, we see that

$$
\begin{gathered}
r=|z|=\sqrt{x^{2}+y^{2}} \\
\theta=\arccos (x / r)=\arcsin (y / r)=\arctan (y / x)
\end{gathered}
$$

Note: The angle θ might be $\arctan (y / x)$ OR $\pi+\arctan (y / x)$ depending on which quadrant we are in.

Converting From Standard to Polar Form

Example: Write $z=\sqrt{6}+\sqrt{2} i$ using polar coordinates. What about $-z$?

Converting From Standard to Polar Form

Example: Write $z=\sqrt{6}+\sqrt{2} i$ using polar coordinates. What about $-z$?

Solution: Note that $r=\sqrt{\sqrt{6}^{2}+\sqrt{2}^{2}}=\sqrt{8}=2 \sqrt{2}$. Further,

$$
\arctan (\sqrt{2} / \sqrt{6})=\arctan 1 / \sqrt{3}=\pi / 6
$$

Thus $(r, \theta)=(2 \sqrt{2}, \pi / 6)$. For $-z$, the angle and radius we get above is the same however we are now in the third quadrant so the coordinates are $(r, \theta)=(2 \sqrt{2}, 7 \pi / 6)$

