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Exponentiation Ciphers

Suppose Alice and Bob want to share a message but there is an
eavesdropper (Eve) watching their communications.
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Exponentiation Ciphers

In an exponentiation cipher, Alice chooses a (large) prime p
and an e satisfying

1 < e < (p − 1) and gcd(e, p − 1) = 1.

Alice then makes the pair (e, p) public and computes her
private key d satisfying

1 < d < (p − 1) and ed ≡ 1 mod p − 1

which can be done quickly using the Euclidean Algorithm (the
inverse condition above is why we required that gcd(e, p− 1)).
To send a message M to Alice, an integer between 0 and
p − 1 inclusive, Bob computes a ciphertext (encrypted
message) C satisfying

0 ≤ C < p and C ≡ Me mod p.

Bob then sends C to Alice.
Alice then computes R ≡ Cd mod p with 0 ≤ R < p.
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Exponentiation Ciphers Diagram
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Exponentiation Ciphers Main Proposition

Proposition: R ≡ M mod p.

Proof: If p | M, then all of M, C and R are 0 and the claim
follows. So we assume that p - M. Recall that ed ≡ 1 mod p − 1
and so we have that there exists an integer k such that
ed = 1 + k(p − 1). Using this, we have

R ≡ Cd mod p

≡ (Me)d mod p by definition of C

≡ Med mod p

≡ M mod p Corollary to F`T since ed ≡ 1 mod p − 1.

as required �
Corollary: R = M
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The Good, The Bad and The Ugly

The good news is that this scheme works. However, Eve can
compute d just as easily as Alice! Eve knows p, hence knows p − 1
and can use the Euclidean algorithm to compute d just like Alice.
This means our scheme is not secure. To rectify this problem, we
include information about two primes.
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RSA

Alice chooses two (large) distinct primes p and q, computes
n = pq and selects any e satisfying

1 < e < (p−1)(q−1) and gcd(e, (p−1)(q−1)) = 1

Alice then makes the pair (e, n) public and compute her
private key d satisfying

1 < d < (p−1)(q−1) and ed ≡ 1 mod (p−1)(q−1)

again which can be done quickly using the Euclidean
Algorithm (Alice knows p and q and hence knows
(p − 1)(q − 1)).
To send a message M to Alice, an integer between 0 and
n − 1 inclusive, Bob computes a ciphertext C satisfying

0 ≤ C < pq and C ≡ Me mod pq.

Bob then sends C to Alice. Alice then computes R ≡ Cd

mod pq with 0 ≤ R < pq.
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RSA Diagram
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RSA Main Theorem

Proposition: R = M.
Proof: Since ed ≡ 1 mod (p − 1)(q − 1), transitivity of
divisibility tells us that

ed ≡ 1 mod p − 1 and ed ≡ 1 mod q − 1.

Since gcd(ed , (p − 1)(q − 1)) = 1, GCD Prime Factorization tells
us that gcd(ed , p − 1) = 1 and that gcd(ed , q − 1) = 1. Next, as
C ≡ Me mod pq, Splitting the Modulus states that

C ≡ Me mod p and C ≡ Me mod q

Similarly, by Splitting the Modulus, we have

R ≡ Cd mod p and R ≡ Cd mod q.

By the previous proposition applied twice, we have that

R ≡ M mod p and R ≡ M mod q.
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RSA Main Theorem

Proposition: R = M.
Proof: (Continued) By the previous proposition applied twice, we
have that

R ≡ M mod p and R ≡ M mod q.

Now, an application of the Chinese Remainder Theorem (or
Splitting the Modulus), valid since p and q are distinct, gives us
that R ≡ M mod pq. Recalling that 0 ≤ R,M < pq, we see that
R = M. �
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Security and Food for Thought

Is this scheme more secure? Can Eve compute d? If Eve can
compute (p − 1)(q − 1) then Eve could break RSA. To
compute this value given only n (which recall is pq), Eve
would need to factor n. Factoring n is hard. Eve could also
break RSA if she could solve the problem of computing M
given Me mod n.

Let ϕ be the Euler Phi Function. Note ϕ(n) = (p − 1)(q − 1)
when n = pq is a product of distinct primes.

How does Alice choose primes p and q?

What if Eve wasn’t just a passive eavesdropper? What if Eve
could change the public key information before it reaches
Bob? (This involves using certificates).

What are some advantages of RSA? (Believed to be secure,
uses the same hardware for encryption and decryption,
computations can be done quickly).
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An Example

Let p = 2, q = 11 and e = 3
1 Compute n, φ(n) and d .
2 Compute C ≡ Me mod n when M = 8.
3 Compute R ≡ Cd mod n when C = 6.

Solution:
1 Note n = 22, φ(n) = (2− 1)(11− 1) = 10 and 3d ≡ 1

mod 10. Multiplying by 7 gives d ≡ 7 mod 10. Hence d = 7.
2 Note that

C ≡ Me ≡ 83 mod 22

≡ 8 · 64 mod 22

≡ 8 · (−2) mod 22

≡ −16 mod 22

≡ 6 mod 22
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An Example Finished

Let p = 2, q = 11 and e = 3

1 Compute n, φ(n) and d . (n = 22, φ(n) = 10, d = 7)

2 Compute C ≡ Me mod n when M = 8 (C = 6).

3 Compute R ≡ Cd mod n when C = 6.

Solution: (of last part) The quick way to solve this is to recall the
RSA theorem and hence M = 8. The long way is to do the
following:

R ≡ Cd ≡ 67 mod 22

≡ 6 · (63)2 ≡ 6 · (216)2 mod 22

≡ 6 · (−4)2 ≡ 6 · 16 mod 22

≡ 6 · (−6) ≡ −36 mod 22

≡ 8 mod 22
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