Carmen's Core Concepts (Math 135)

Carmen Bruni

University of Waterloo

Week 9 Part 1 - RSA

(1) Exponentiation Ciphers
(2) Exponentiation Ciphers
(3) Exponentiation Ciphers Diagram
(4) Exponentiation Ciphers Main Proposition
(5) The Good, The Bad and The Ugly
(6) RSA
(7) RSA Diagram
(8) RSA Main Theorem
(9) RSA Main Theorem
(10) Security and Food for Thought
(11) An Example
(12) An Example Finished

Exponentiation Ciphers

Suppose Alice and Bob want to share a message but there is an eavesdropper (Eve) watching their communications.

Exponentiation Ciphers

- In an exponentiation cipher, Alice chooses a (large) prime p and an e satisfying

$$
1<e<(p-1) \quad \text { and } \quad \operatorname{gcd}(e, p-1)=1
$$

Exponentiation Ciphers

- In an exponentiation cipher, Alice chooses a (large) prime p and an e satisfying

$$
1<e<(p-1) \quad \text { and } \quad \operatorname{gcd}(e, p-1)=1
$$

- Alice then makes the pair (e, p) public and computes her private key d satisfying

$$
1<d<(p-1) \quad \text { and } \quad e d \equiv 1 \quad \bmod p-1
$$

which can be done quickly using the Euclidean Algorithm (the inverse condition above is why we required that $\operatorname{gcd}(e, p-1))$.

Exponentiation Ciphers

- In an exponentiation cipher, Alice chooses a (large) prime p and an e satisfying

$$
1<e<(p-1) \quad \text { and } \quad \operatorname{gcd}(e, p-1)=1
$$

- Alice then makes the pair (e, p) public and computes her private key d satisfying

$$
1<d<(p-1) \quad \text { and } \quad e d \equiv 1 \quad \bmod p-1
$$

which can be done quickly using the Euclidean Algorithm (the inverse condition above is why we required that $\operatorname{gcd}(e, p-1))$.

- To send a message M to Alice, an integer between 0 and $p-1$ inclusive, Bob computes a ciphertext (encrypted message) C satisfying

$$
0 \leq C<p \quad \text { and } \quad C \equiv M^{e} \quad \bmod p .
$$

Bob then sends C to Alice.

Exponentiation Ciphers

- In an exponentiation cipher, Alice chooses a (large) prime p and an e satisfying

$$
1<e<(p-1) \quad \text { and } \quad \operatorname{gcd}(e, p-1)=1
$$

- Alice then makes the pair (e, p) public and computes her private key d satisfying

$$
1<d<(p-1) \quad \text { and } \quad e d \equiv 1 \quad \bmod p-1
$$

which can be done quickly using the Euclidean Algorithm (the inverse condition above is why we required that $\operatorname{gcd}(e, p-1))$.

- To send a message M to Alice, an integer between 0 and $p-1$ inclusive, Bob computes a ciphertext (encrypted message) C satisfying

$$
0 \leq C<p \quad \text { and } \quad C \equiv M^{e} \quad \bmod p .
$$

Bob then sends C to Alice.

- Alice then computes $R \equiv C^{d} \bmod p$ with $0 \leq R<p$.

Exponentiation Ciphers Diagram

Exponentiation Ciphers Main Proposition

Proposition: $R \equiv M \bmod p$.

Exponentiation Ciphers Main Proposition

Proposition: $R \equiv M \bmod p$.
Proof: If $p \mid M$, then all of M, C and R are 0 and the claim follows. So we assume that $p \nmid M$. Recall that $e d \equiv 1 \bmod p-1$ and so we have that there exists an integer k such that $e d=1+k(p-1)$. Using this, we have

$$
R \equiv C^{d} \bmod p
$$

$\equiv\left(M^{e}\right)^{d} \bmod p$ by definition of C
$\equiv M^{\text {ed }} \bmod p$
$\equiv M \bmod p \quad$ Corollary to $\mathrm{F} \ell \mathrm{T}$ since $e d \equiv 1 \bmod p-1$.
as required
Corollary: $\quad R=M$

The Good, The Bad and The Ugly

The good news is that this scheme works. However, Eve can compute d just as easily as Alice! Eve knows p, hence knows $p-1$ and can use the Euclidean algorithm to compute d just like Alice. This means our scheme is not secure. To rectify this problem, we include information about two primes.

RSA

- Alice chooses two (large) distinct primes p and q, computes $n=p q$ and selects any e satisfying

$$
1<e<(p-1)(q-1) \quad \text { and } \quad \operatorname{gcd}(e,(p-1)(q-1))=1
$$

RSA

- Alice chooses two (large) distinct primes p and q, computes $n=p q$ and selects any e satisfying

$$
1<e<(p-1)(q-1) \quad \text { and } \quad \operatorname{gcd}(e,(p-1)(q-1))=1
$$

- Alice then makes the pair (e, n) public and compute her private key d satisfying
$1<d<(p-1)(q-1) \quad$ and $\quad e d \equiv 1 \quad \bmod (p-1)(q-1)$
again which can be done quickly using the Euclidean Algorithm (Alice knows p and q and hence knows $(p-1)(q-1))$.

RSA

- Alice chooses two (large) distinct primes p and q, computes $n=p q$ and selects any e satisfying

$$
1<e<(p-1)(q-1) \quad \text { and } \quad \operatorname{gcd}(e,(p-1)(q-1))=1
$$

- Alice then makes the pair (e, n) public and compute her private key d satisfying
$1<d<(p-1)(q-1) \quad$ and $\quad e d \equiv 1 \quad \bmod (p-1)(q-1)$
again which can be done quickly using the Euclidean Algorithm (Alice knows p and q and hence knows $(p-1)(q-1))$.
- To send a message M to Alice, an integer between 0 and $n-1$ inclusive, Bob computes a ciphertext C satisfying

$$
0 \leq C<p q \quad \text { and } \quad C \equiv M^{e} \quad \bmod p q
$$

RSA

- Alice chooses two (large) distinct primes p and q, computes $n=p q$ and selects any e satisfying

$$
1<e<(p-1)(q-1) \quad \text { and } \quad \operatorname{gcd}(e,(p-1)(q-1))=1
$$

- Alice then makes the pair (e, n) public and compute her private key d satisfying
$1<d<(p-1)(q-1) \quad$ and $\quad e d \equiv 1 \quad \bmod (p-1)(q-1)$
again which can be done quickly using the Euclidean Algorithm (Alice knows p and q and hence knows $(p-1)(q-1))$.
- To send a message M to Alice, an integer between 0 and $n-1$ inclusive, Bob computes a ciphertext C satisfying

$$
0 \leq C<p q \quad \text { and } \quad C \equiv M^{e} \quad \bmod p q .
$$

- Bob then sends C to Alice. Alice then computes $R \equiv C^{d}$ $\bmod p q$ with $0 \leq R<p q$.

RSA Diagram

RSA Main Theorem

Proposition: $R=M$.
Proof: Since ed $\equiv 1 \bmod (p-1)(q-1)$, transitivity of divisibility tells us that

$$
e d \equiv 1 \quad \bmod p-1 \quad \text { and } \quad e d \equiv 1 \quad \bmod q-1
$$

Since $\operatorname{gcd}(e d,(p-1)(q-1))=1$, GCD Prime Factorization tells us that $\operatorname{gcd}(e d, p-1)=1$ and that $\operatorname{gcd}(e d, q-1)=1$. Next, as $C \equiv M^{e} \bmod p q$, Splitting the Modulus states that

$$
C \equiv M^{e} \quad \bmod p \quad \text { and } \quad C \equiv M^{e} \quad \bmod q
$$

Similarly, by Splitting the Modulus, we have

$$
R \equiv C^{d} \quad \bmod p \quad \text { and } \quad R \equiv C^{d} \quad \bmod q
$$

By the previous proposition applied twice, we have that

$$
R \equiv M \quad \bmod p \quad \text { and } \quad R \equiv M \quad \bmod q .
$$

RSA Main Theorem

Proposition: $\quad R=M$.
Proof: (Continued) By the previous proposition applied twice, we have that

$$
R \equiv M \quad \bmod p \quad \text { and } \quad R \equiv M \quad \bmod q
$$

Now, an application of the Chinese Remainder Theorem (or Splitting the Modulus), valid since p and q are distinct, gives us that $R \equiv M \bmod p q$. Recalling that $0 \leq R, M<p q$, we see that $R=M$.

Security and Food for Thought

- Is this scheme more secure? Can Eve compute d ? If Eve can compute $(p-1)(q-1)$ then Eve could break RSA. To compute this value given only n (which recall is $p q$), Eve would need to factor n. Factoring n is hard. Eve could also break RSA if she could solve the problem of computing M given $M^{e} \bmod n$.
- Let φ be the Euler Phi Function. Note $\varphi(n)=(p-1)(q-1)$ when $n=p q$ is a product of distinct primes.
- How does Alice choose primes p and q ?
- What if Eve wasn't just a passive eavesdropper? What if Eve could change the public key information before it reaches Bob? (This involves using certificates).
- What are some advantages of RSA? (Believed to be secure, uses the same hardware for encryption and decryption, computations can be done quickly).

An Example

Let $p=2, q=11$ and $e=3$
(1) Compute $n, \phi(n)$ and d.
(2) Compute $C \equiv M^{e} \bmod n$ when $M=8$.
(3) Compute $R \equiv C^{d} \bmod n$ when $C=6$.

An Example

Let $p=2, q=11$ and $e=3$
(1) Compute $n, \phi(n)$ and d.
(2) Compute $C \equiv M^{e} \bmod n$ when $M=8$.
(3) Compute $R \equiv C^{d} \bmod n$ when $C=6$.

Solution:

(1) Note $n=22, \phi(n)=(2-1)(11-1)=10$ and $3 d \equiv 1$ $\bmod 10$. Multiplying by 7 gives $d \equiv 7 \bmod 10$. Hence $d=7$.
(2) Note that

$$
\begin{aligned}
C \equiv M^{e} & \equiv 8^{3} \quad \bmod 22 \\
& \equiv 8 \cdot 64 \quad \bmod 22 \\
& \equiv 8 \cdot(-2) \quad \bmod 22 \\
& \equiv-16 \quad \bmod 22 \\
& \equiv 6 \quad \bmod 22
\end{aligned}
$$

An Example Finished

Let $p=2, q=11$ and $e=3$
(1) Compute $n, \phi(n)$ and d. $(n=22, \phi(n)=10, d=7)$
(2) Compute $C \equiv M^{e} \bmod n$ when $M=8(C=6)$.
(3) Compute $R \equiv C^{d} \bmod n$ when $C=6$.

An Example Finished

Let $p=2, q=11$ and $e=3$
(1) Compute $n, \phi(n)$ and d. $(n=22, \phi(n)=10, d=7)$
(2) Compute $C \equiv M^{e} \bmod n$ when $M=8(C=6)$.
(3) Compute $R \equiv C^{d} \bmod n$ when $C=6$.

Solution: (of last part) The quick way to solve this is to recall the RSA theorem and hence $M=8$. The long way is to do the following:

$$
\begin{aligned}
R & \equiv C^{d} & & \equiv 6^{7} \quad \bmod 22 \\
& \equiv 6 \cdot\left(6^{3}\right)^{2} & & \equiv 6 \cdot(216)^{2} \bmod 22 \\
& \equiv 6 \cdot(-4)^{2} & & \equiv 6 \cdot 16 \quad \bmod 22 \\
& \equiv 6 \cdot(-6) & & \equiv-36 \quad \bmod 22 \\
& \equiv 8 \quad \bmod 22 & &
\end{aligned}
$$

