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The following are equivalent (TFAE)

a ≡ b (mod m)

m | (a− b)

∃k ∈ Z, a− b = km

∃k ∈ Z, a = km + b

a and b have the same remainder when divided by m

[a] = [b] in Zm.

For example, solving [10][x ] = [1] is the exact same as solving
10x ≡ 1 (mod m).
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Inverses

Inverses

1 [−a] is the additive inverse of [a], that is, [a] + [−a] = [0].

2 If there exists an element [b] ∈ Zm such that
[a][b] = [1] = [b][a], we call [b] the multiplicative inverse of
[a] and write [b] = [a]−1 or b ≡ a−1 mod m.
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More on Multiplicative Inverses

Proposition: Let a ∈ Z and m ∈ N.
1 [a]−1 exists in Zm if and only if gcd(a,m) = 1.
2 [a]−1 is unique if it exists.

Proof:
1

[a]−1 exists ⇔ [a][x ] = [1] is solvable in Zm

⇔ ax + my = 1 is a solvable [LDE]

⇔ gcd(a,m) = 1 [GCDOO]

completing the proof. �
2 Assume [a]−1 exists. Suppose there exists a [b] ∈ Zm such

that [a][b] = [1] = [b][a]. Then

[a]−1[a][b] = [a]−1[1]

[1][b] = [a]−1

[b] = [a]−1
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Linear Congruence Theorem 2 [LCT2]

Theorem: Let a, c ∈ Z and let m ∈ N. Let gcd(a,m) = d . The
equation [a][x ] = [c] in Zm has a solution if and only if d | c .
Moreover, if [x ] = [x0] is one particular solution, then the complete
solution is{

[x0], [x0 + m
d ], [x0 + 2m

d ], . . . , [x0 + (d − 1)md ]
}
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Fermat’s Little Theorem [F`T]

Theorem: If p is prime and p - a then ap−1 ≡ 1 mod p.
Equivalently, [ap−1] = [1] in Zp.
Proof: Major Ideas:

Lemma: Let gcd(a, p) = 1. Let

S = {a, 2a, ..., (p − 1)a} T = {1, 2, ..., p − 1}.

Then the elements of S are unique modulo p and for all s ∈ S ,
there exists a unique element t ∈ T such that s ≡ t mod p.

∏
x∈S

x ≡
∏
y∈T

y mod p ⇐⇒
p−1∏
k=1

ka ≡
p−1∏
j=1

j mod p

⇐⇒ ap−1
p−1∏
k=1

k ≡
p−1∏
j=1

j mod p ⇐⇒ ap−1 ≡ 1 mod p
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Example of Fermat’s Little Theorem

Find the remainder when 792 is divided by 11.

792 ≡ 79(10)+2 mod 11

≡ (710)972 mod 11

≡ 19 · 72 mod 11 By F`T since 11 - 7

≡ 49 mod 11

≡ 5 mod 11
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Important Corollaries to F`T

Corollary: If p is a prime and a ∈ Z, then ap ≡ a mod p.

Corollary: If p is a prime number and [a] 6= [0] in Zp, then
there exists a [b] ∈ Zp such that [a][b] = [1], namely
[b] = [ap−2] = [a]p−2.

Corollary: If r = s + kp, then ar ≡ as+k mod p where p is
a prime and a ∈ Z and r , s, k ∈ N.

Corollary: Prove that if p - a and r ≡ s mod (p − 1), then
ar ≡ as mod p.
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Chinese Remainder Theorem [CRT]

Theorem: If gcd(m1,m2) = 1, then for any choice of integers a1
and a2, there exists a solution to the simultaneous congruences

n ≡ a1 (mod m1)

n ≡ a2 (mod m2)

Moreover, if n = n0 is one integer solution, then the complete
solution is n ≡ n0 (mod m1m2).
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Chinese Remainder Theorem Example

Solve the simultaneous congruence

x ≡ 2 mod 7 x ≡ 7 mod 11

Solution: Write x = 2 + 7k for some k ∈ Z. Into the second eqn:

2 + 7k ≡ 7 mod 11

7k ≡ 5 mod 11

Multiplying both sides by 3 gives

3 · 7k ≡ 15 mod 11⇐⇒ 21k ≡ 4 mod 11

⇐⇒ −k ≡ 4 mod 11⇐⇒ k ≡ 7 mod 11

Therefore, k = 7 + 11` for some ` ∈ Z. Thus, since x = 2 + 7k
and k = 7 + 11`, we have

x = 2 + 7k = 2 + 7(7 + 11`) = 51 + 77`

Therefore, x ≡ 51 mod 77 is the solution. �

Carmen Bruni Carmen’s Core Concepts (Math 135)



Chinese Remainder Theorem Example

Solve the simultaneous congruence

x ≡ 2 mod 7 x ≡ 7 mod 11

Solution: Write x = 2 + 7k for some k ∈ Z. Into the second eqn:

2 + 7k ≡ 7 mod 11

7k ≡ 5 mod 11

Multiplying both sides by 3 gives

3 · 7k ≡ 15 mod 11⇐⇒ 21k ≡ 4 mod 11

⇐⇒ −k ≡ 4 mod 11⇐⇒ k ≡ 7 mod 11

Therefore, k = 7 + 11` for some ` ∈ Z. Thus, since x = 2 + 7k
and k = 7 + 11`, we have

x = 2 + 7k = 2 + 7(7 + 11`) = 51 + 77`

Therefore, x ≡ 51 mod 77 is the solution. �
Carmen Bruni Carmen’s Core Concepts (Math 135)



Splitting the Modulus [SM]

Theorem: Let m and n be coprime positive integers. Then, for
any integers x and a, we have

x ≡ a mod m

x ≡ a mod n

simultaneously if and only if x ≡ a mod mn.
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Introduction to Cryptography

What is Cryptography?

Private vs Public Key Cryptography (Pad Lock analogy)
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Public Key Cryptography

1 Alice produces a private key d and a public key e.

2 Bob uses the public key e to take a message M and encrypt it
to some ciphertext C

3 Bob then sends C over an insecure channel to Alice.

4 Alice decrypts C to M using d .

Encryption and decryption are inverses to each other.

d and e are different,

Only d is secret.
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Square and Multiply Algorithm

Example: Compute 599 mod 101

Solution: First, we compute successive square powers of 5:

51 ≡ 5 mod 101

52 ≡ 25 mod 101

54 ≡ (25)2 ≡ 625 ≡ 19 mod 101

58 ≡ (19)2 ≡ 361 ≡ 58 mod 101

516 ≡ (58)2 ≡ 31 mod 101

532 ≡ (31)2 ≡ 52 mod 101

564 ≡ (52)2 ≡ 78 mod 101

Now, in binary, 99 = 64 + 32 + 2 + 1 = 26 + 25 + 21 + 20. Hence,

599 ≡ 564 · 532 · 52 · 51 mod 11

≡ 78 · 52 · 25 · 5 mod 11

≡ 81 mod 11
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