Carmen's Core Concepts (Math 135)

Carmen Bruni

University of Waterloo

Week 8

(1) The following are equivalent (TFAE)
(2) Inverses
(3) More on Multiplicative Inverses

4 Linear Congruence Theorem 2 [LCT2]
(5) Fermat's Little Theorem [F FT]
(6) Example of Fermat's Little Theorem
(7) Important Corollaries to $\mathrm{F} \ell T$
(8) Chinese Remainder Theorem [CRT]
(9) Chinese Remainder Theorem Example
(10) Splitting the Modulus [SM]
(11) Introduction to Cryptography
(12) Public Key Cryptography
(13) Square and Multiply Algorithm

The following are equivalent (TFAE)

- $a \equiv b(\bmod m)$
- $m \mid(a-b)$
- $\exists k \in \mathbb{Z}, a-b=k m$
- $\exists k \in \mathbb{Z}, a=k m+b$
- a and b have the same remainder when divided by m
- $[a]=[b]$ in \mathbb{Z}_{m}.

The following are equivalent (TFAE)

- $a \equiv b(\bmod m)$
- $m \mid(a-b)$
- $\exists k \in \mathbb{Z}, a-b=k m$
- $\exists k \in \mathbb{Z}, a=k m+b$
- a and b have the same remainder when divided by m
- $[a]=[b]$ in \mathbb{Z}_{m}.

For example, solving $[10][x]=[1]$ is the exact same as solving $10 x \equiv 1(\bmod m)$.

Inverses

Inverses

(1) $[-a]$ is the additive inverse of $[a]$, that is, $[a]+[-a]=[0]$.
(2) If there exists an element $[b] \in \mathbb{Z}_{m}$ such that
$[a][b]=[1]=[b][a]$, we call $[b]$ the multiplicative inverse of $[a]$ and write $[b]=[a]^{-1}$ or $b \equiv a^{-1} \bmod m$.

More on Multiplicative Inverses

Proposition: Let $a \in \mathbb{Z}$ and $m \in \mathbb{N}$.
(1) $[a]^{-1}$ exists in \mathbb{Z}_{m} if and only if $\operatorname{gcd}(a, m)=1$.
(2) $[a]^{-1}$ is unique if it exists.

Proof:
(1)

$$
\begin{array}{rll}
{[a]^{-1} \text { exists }} & \Leftrightarrow & {[a][x]=[1] \text { is solvable in } \mathbb{Z}_{m}} \\
& \Leftrightarrow & a x+m y=1 \text { is a solvable }[\mathrm{LDE}] \\
& \Leftrightarrow & \operatorname{gcd}(a, m)=1[G C D O O]
\end{array}
$$

completing the proof.
(2) Assume $[a]^{-1}$ exists. Suppose there exists a $[b] \in \mathbb{Z}_{m}$ such that $[a][b]=[1]=[b][a]$. Then

$$
\begin{aligned}
{[a]^{-1}[a][b] } & =[a]^{-1}[1] \\
{[1][b] } & =[a]^{-1} \\
{[b] } & =[a]^{-1}
\end{aligned}
$$

Linear Congruence Theorem 2 [LCT2]

Theorem: Let $a, c \in \mathbb{Z}$ and let $m \in \mathbb{N}$. Let $\operatorname{gcd}(a, m)=d$. The equation $[a][x]=[c]$ in \mathbb{Z}_{m} has a solution if and only if $d \mid c$. Moreover, if $[x]=\left[x_{0}\right]$ is one particular solution, then the complete solution is

$$
\left\{\left[x_{0}\right],\left[x_{0}+\frac{m}{d}\right],\left[x_{0}+2 \frac{m}{d}\right], \ldots,\left[x_{0}+(d-1) \frac{m}{d}\right]\right\}
$$

Fermat's Little Theorem [FlT]

Theorem: If p is prime and $p \nmid a$ then $a^{p-1} \equiv 1 \bmod p$.
Equivalently, $\left[a^{p-1}\right]=[1]$ in \mathbb{Z}_{p}.
Proof: Major Ideas:

- Lemma: Let $\operatorname{gcd}(a, p)=1$. Let

$$
S=\{a, 2 a, \ldots,(p-1) a\} \quad T=\{1,2, \ldots, p-1\} .
$$

Then the elements of S are unique modulo p and for all $s \in S$, there exists a unique element $t \in T$ such that $s \equiv t \bmod p$.

$$
\begin{array}{r}
\prod_{x \in S} x \equiv \prod_{y \in T} y \bmod p \Longleftrightarrow \prod_{k=1}^{p-1} k a \equiv \prod_{j=1}^{p-1} j \bmod p \\
\Longleftrightarrow a^{p-1} \prod_{k=1}^{p-1} k \equiv \prod_{j=1}^{p-1} j \bmod p \Longleftrightarrow a^{p-1} \equiv 1 \bmod p
\end{array}
$$

Example of Fermat's Little Theorem

Find the remainder when 7^{92} is divided by 11 .

Example of Fermat's Little Theorem

Find the remainder when 7^{92} is divided by 11 .

$$
\begin{array}{rlr}
7^{92} & \equiv 7^{9(10)+2} \bmod 11 & \\
& \equiv\left(7^{10}\right)^{9} 7^{2} \bmod 11 & \\
& \equiv 1^{9} \cdot 7^{2} \quad \bmod 11 & \text { By F } \ell T \text { since } 11 \nmid 7 \\
& \equiv 49 \bmod 11 & \\
& \equiv 5 \bmod 11 &
\end{array}
$$

Important Corollaries to $\mathrm{F} \ell T$

- Corollary: If p is a prime and $a \in \mathbb{Z}$, then $a^{p} \equiv a \bmod p$.
- Corollary: If p is a prime number and $[a] \neq[0]$ in \mathbb{Z}_{p}, then there exists a $[b] \in \mathbb{Z}_{p}$ such that $[a][b]=[1]$, namely $[b]=\left[a^{p-2}\right]=[a]^{p-2}$.
- Corollary: If $r=s+k p$, then $a^{r} \equiv a^{s+k} \bmod p$ where p is a prime and $a \in \mathbb{Z}$ and $r, s, k \in \mathbb{N}$.
- Corollary: Prove that if $p \nmid a$ and $r \equiv s \bmod (p-1)$, then $a^{r} \equiv a^{s} \bmod p$.

Chinese Remainder Theorem [CRT]

Theorem: If $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$, then for any choice of integers a_{1} and a_{2}, there exists a solution to the simultaneous congruences

$$
\begin{aligned}
n & \equiv a_{1} \quad\left(\bmod m_{1}\right) \\
n & \equiv a_{2} \quad\left(\bmod m_{2}\right)
\end{aligned}
$$

Moreover, if $n=n_{0}$ is one integer solution, then the complete solution is $n \equiv n_{0}\left(\bmod m_{1} m_{2}\right)$.

Chinese Remainder Theorem Example

Solve the simultaneous congruence

$$
x \equiv 2 \bmod 7 \quad x \equiv 7 \quad \bmod 11
$$

Chinese Remainder Theorem Example

Solve the simultaneous congruence

$$
x \equiv 2 \bmod 7 \quad x \equiv 7 \quad \bmod 11
$$

Solution: Write $x=2+7 k$ for some $k \in \mathbb{Z}$. Into the second eqn:

$$
\begin{aligned}
2+7 k & \equiv 7 \quad \bmod 11 \\
7 k & \equiv 5 \quad \bmod 11
\end{aligned}
$$

Multiplying both sides by 3 gives

$$
\begin{aligned}
3 \cdot 7 k \equiv 15 & \bmod 11 \Longleftrightarrow 21 k \equiv 4 \bmod 11 \\
\Longleftrightarrow-k \equiv 4 & \bmod 11 \Longleftrightarrow k \equiv 7 \bmod 11
\end{aligned}
$$

Therefore, $k=7+11 \ell$ for some $\ell \in \mathbb{Z}$. Thus, since $x=2+7 k$ and $k=7+11 \ell$, we have

$$
x=2+7 k=2+7(7+11 \ell)=51+77 \ell
$$

Therefore, $x \equiv 51 \bmod 77$ is the solution.

Splitting the Modulus [SM]

Theorem: Let m and n be coprime positive integers. Then, for any integers x and a, we have

$$
\begin{array}{ll}
x \equiv a & \bmod m \\
x \equiv a & \bmod n
\end{array}
$$

simultaneously if and only if $x \equiv a \bmod m n$.

Introduction to Cryptography

- What is Cryptography?
- Private vs Public Key Cryptography (Pad Lock analogy)

Public Key Cryptography

(1) Alice produces a private key d and a public key e.
(2) Bob uses the public key e to take a message M and encrypt it to some ciphertext C
(3) Bob then sends C over an insecure channel to Alice.
(4) Alice decrypts C to M using d.

- Encryption and decryption are inverses to each other.
- d and e are different,
- Only d is secret.

Square and Multiply Algorithm

Example: Compute $5^{99} \bmod 101$

Square and Multiply Algorithm

Example: Compute $5^{99} \bmod 101$
Solution: First, we compute successive square powers of 5 :

$$
\begin{array}{ll}
5^{1} \equiv 5 \quad \bmod 101 & 5^{16} \equiv(58)^{2} \equiv 31 \quad \bmod 101 \\
5^{2} \equiv 25 \bmod 101 & 5^{32} \equiv(31)^{2} \equiv 52 \quad \bmod 101 \\
5^{4} \equiv(25)^{2} \equiv 625 \equiv 19 \quad \bmod 101 & 5^{64} \equiv(52)^{2} \equiv 78 \quad \bmod 101 \\
5^{8} \equiv(19)^{2} \equiv 361 \equiv 58 \quad \bmod 101 &
\end{array}
$$

Square and Multiply Algorithm

Example: Compute $5^{99} \bmod 101$
Solution: First, we compute successive square powers of 5 :

$$
\begin{array}{ll}
5^{1} \equiv 5 \quad \bmod 101 & 5^{16} \equiv(58)^{2} \equiv 31 \quad \bmod 101 \\
5^{2} \equiv 25 \quad \bmod 101 & 5^{32} \equiv(31)^{2} \equiv 52 \quad \bmod 101 \\
5^{4} \equiv(25)^{2} \equiv 625 \equiv 19 \quad \bmod 101 & 5^{64} \equiv(52)^{2} \equiv 78 \quad \bmod 101 \\
5^{8} \equiv(19)^{2} \equiv 361 \equiv 58 \quad \bmod 101 &
\end{array}
$$

Now, in binary, $99=64+32+2+1=2^{6}+2^{5}+2^{1}+2^{0}$. Hence,

$$
\begin{aligned}
5^{99} & \equiv 5^{64} \cdot 5^{32} \cdot 5^{2} \cdot 5^{1} \quad \bmod 11 \\
& \equiv 78 \cdot 52 \cdot 25 \cdot 5 \quad \bmod 11 \\
& \equiv 81 \quad \bmod 11
\end{aligned}
$$

