Carmen's Core Concepts (Math 135)

Carmen Bruni

University of Waterloo

Week 8

- The following are equivalent (TFAE)
- 2 Inverses
- 3 More on Multiplicative Inverses
- 4 Linear Congruence Theorem 2 [LCT2]
- 5 Fermat's Little Theorem $[F\ell T]$
- 6 Example of Fermat's Little Theorem
- 🕜 Important Corollaries to F ℓ T
- 8 Chinese Remainder Theorem [CRT]
- Ohinese Remainder Theorem Example
- 10 Splitting the Modulus [SM]
- Introduction to Cryptography
- Public Key Cryptography
- 13 Square and Multiply Algorithm

- $a \equiv b \pmod{m}$
- *m* | (*a* − *b*)
- $\exists k \in \mathbb{Z}, a-b=km$
- $\exists k \in \mathbb{Z}, a = km + b$
- a and b have the same remainder when divided by m
- [a] = [b] in \mathbb{Z}_m .

- $a \equiv b \pmod{m}$
- *m* | (*a* − *b*)
- $\exists k \in \mathbb{Z}, a-b=km$
- $\exists k \in \mathbb{Z}, a = km + b$
- a and b have the same remainder when divided by m
- [a] = [b] in \mathbb{Z}_m .

For example, solving [10][x] = [1] is the exact same as solving $10x \equiv 1 \pmod{m}$.

Inverses

- [-a] is the additive inverse of [a], that is, [a] + [-a] = [0].
- If there exists an element [b] ∈ Z_m such that
 [a][b] = [1] = [b][a], we call [b] the multiplicative inverse of
 [a] and write [b] = [a]⁻¹ or b ≡ a⁻¹ mod m.

More on Multiplicative Inverses

Proposition: Let a ∈ Z and m ∈ N.
(a) [a]⁻¹ exists in Z_m if and only if gcd(a, m) = 1.
(a) [a]⁻¹ is unique if it exists.
Proof:

1

$$\begin{array}{ll} [a]^{-1} \text{ exists} & \Leftrightarrow & [a][x] = [1] \text{ is solvable in } \mathbb{Z}_m \\ \Leftrightarrow & ax + my = 1 \text{ is a solvable [LDE]} \\ \Leftrightarrow & \gcd(a, m) = 1 \text{ [GCDOO]} \end{array}$$

completing the proof.

② Assume $[a]^{-1}$ exists. Suppose there exists a $[b] \in \mathbb{Z}_m$ such that [a][b] = [1] = [b][a]. Then

$$[a]^{-1}[a][b] = [a]^{-1}[1]$$

 $[1][b] = [a]^{-1}$
 $[b] = [a]^{-1}$

Theorem: Let $a, c \in \mathbb{Z}$ and let $m \in \mathbb{N}$. Let gcd(a, m) = d. The equation [a][x] = [c] in \mathbb{Z}_m has a solution if and only if $d \mid c$. Moreover, if $[x] = [x_0]$ is one particular solution, then the complete solution is

$$\left\{ [x_0], [x_0 + \frac{m}{d}], [x_0 + 2\frac{m}{d}], \dots, [x_0 + (d-1)\frac{m}{d}] \right\}$$

Fermat's Little Theorem $[F\ell T]$

۲

Theorem: If *p* is prime and $p \nmid a$ then $a^{p-1} \equiv 1 \mod p$. Equivalently, $[a^{p-1}] = [1]$ in \mathbb{Z}_p . **Proof:** Major Ideas:

• Lemma: Let gcd(a, p) = 1. Let

$$S = \{a, 2a, ..., (p-1)a\} \qquad T = \{1, 2, ..., p-1\}.$$

Then the elements of S are unique modulo p and for all $s \in S$, there exists a unique element $t \in T$ such that $s \equiv t \mod p$.

$$\prod_{x \in S} x \equiv \prod_{y \in T} y \mod p \Longleftrightarrow \prod_{k=1}^{p-1} ka \equiv \prod_{j=1}^{p-1} j \mod p$$
$$\iff a^{p-1} \prod_{k=1}^{p-1} k \equiv \prod_{j=1}^{p-1} j \mod p \iff a^{p-1} \equiv 1 \mod p$$

Find the remainder when 7^{92} is divided by 11.

Find the remainder when 7^{92} is divided by 11.

$$7^{92} \equiv 7^{9(10)+2} \mod 11$$

 $\equiv (7^{10})^9 7^2 \mod 11$
 $\equiv 1^9 \cdot 7^2 \mod 11$ By F ℓ T since $11 \nmid 7$
 $\equiv 49 \mod 11$
 $\equiv 5 \mod 11$

- **Corollary:** If p is a prime and $a \in \mathbb{Z}$, then $a^p \equiv a \mod p$.
- Corollary: If p is a prime number and [a] ≠ [0] in Z_p, then there exists a [b] ∈ Z_p such that [a][b] = [1], namely [b] = [a^{p-2}] = [a]^{p-2}.
- Corollary: If r = s + kp, then $a^r \equiv a^{s+k} \mod p$ where p is a prime and $a \in \mathbb{Z}$ and $r, s, k \in \mathbb{N}$.
- Corollary: Prove that if $p \nmid a$ and $r \equiv s \mod (p-1)$, then $a^r \equiv a^s \mod p$.

Theorem: If $gcd(m_1, m_2) = 1$, then for any choice of integers a_1 and a_2 , there exists a solution to the simultaneous congruences

 $n \equiv a_1 \pmod{m_1}$ $n \equiv a_2 \pmod{m_2}$

Moreover, if $n = n_0$ is one integer solution, then the complete solution is $n \equiv n_0 \pmod{m_1 m_2}$.

Chinese Remainder Theorem Example

Solve the simultaneous congruence

 $x \equiv 2 \mod 7$ $x \equiv 7 \mod 11$

Chinese Remainder Theorem Example

Solve the simultaneous congruence

 $x \equiv 2 \mod 7$ $x \equiv 7 \mod 11$

Solution: Write x = 2 + 7k for some $k \in \mathbb{Z}$. Into the second eqn:

$$2 + 7k \equiv 7 \mod 11$$
$$7k \equiv 5 \mod 11$$

Multiplying both sides by 3 gives

$$3 \cdot 7k \equiv 15 \mod 11 \iff 21k \equiv 4 \mod 11$$

 $\iff -k \equiv 4 \mod 11 \iff k \equiv 7 \mod 11$

Therefore, $k = 7 + 11\ell$ for some $\ell \in \mathbb{Z}$. Thus, since x = 2 + 7kand $k = 7 + 11\ell$, we have

$$x = 2 + 7k = 2 + 7(7 + 11\ell) = 51 + 77\ell$$

Therefore, $x \equiv 51 \mod 77$ is the solution.

Theorem: Let m and n be coprime positive integers. Then, for any integers x and a, we have

 $x \equiv a \mod m$ $x \equiv a \mod n$

simultaneously if and only if $x \equiv a \mod mn$.

- What is Cryptography?
- Private vs Public Key Cryptography (Pad Lock analogy)

- Alice produces a private key d and a public key e.
- Bob uses the public key e to take a message M and encrypt it to some ciphertext C
- **③** Bob then sends *C* over an insecure channel to Alice.
- Alice decrypts C to M using d.
 - Encryption and decryption are inverses to each other.
 - d and e are different,
 - Only *d* is secret.

Square and Multiply Algorithm

Example: Compute 5⁹⁹ mod 101

Square and Multiply Algorithm

Example: Compute 5⁹⁹ mod 101

Solution: First, we compute successive square powers of 5:

- $5^{1} \equiv 5 \mod 101$ $5^{2} \equiv 25 \mod 101$ $5^{4} \equiv (25)^{2} \equiv 625 \equiv 19 \mod 101$ $5^{8} \equiv (19)^{2} \equiv 361 \equiv 58 \mod 101$
- $5^{16} \equiv (58)^2 \equiv 31 \mod 101$

$$5^{32} \equiv (31)^2 \equiv 52 \mod 101$$

$$5^{64} \equiv (52)^2 \equiv 78 \mod 101$$

Square and Multiply Algorithm

Example: Compute 5⁹⁹ mod 101

Solution: First, we compute successive square powers of 5:

$$5^1 \equiv 5 \mod 101$$
 $5^{16} \equiv (58)^2 \equiv 31 \mod 101$ $5^2 \equiv 25 \mod 101$ $5^{32} \equiv (31)^2 \equiv 52 \mod 101$ $5^4 \equiv (25)^2 \equiv 625 \equiv 19 \mod 101$ $5^{64} \equiv (52)^2 \equiv 78 \mod 101$ $5^8 \equiv (19)^2 \equiv 361 \equiv 58 \mod 101$

Now, in binary, $99 = 64 + 32 + 2 + 1 = 2^6 + 2^5 + 2^1 + 2^0$. Hence,

$$5^{99} \equiv 5^{64} \cdot 5^{32} \cdot 5^2 \cdot 5^1 \mod 11$$

 $\equiv 78 \cdot 52 \cdot 25 \cdot 5 \mod 11$
 $\equiv 81 \mod 11$