Carmen's Core Concepts (Math 135)

Carmen Bruni

University of Waterloo

Week 7 Part 2

(1) Definition of a Commutative Ring and Field
(2) Congruence Classes
(3) The Ring \mathbb{Z}_{m}
(4) Well-Defined
(5) Addition Table
(6) Multiplication Table

Definition of a Commutative Ring and Field

Definition: A commutative ring is a set R along with two closed operations + and \cdot such that for $a, b, c \in R$ and
(1) Associative $(a+b)+c=a+(b+c)$ and $(a b) c=a(b c)$.
(2) Commutative $a+b=b+a$ and $a b=b a$.
(3) Identities: there are [distinct] elements $0,1 \in R$ such that $a+0=a$ and $a \cdot 1=a$.
(4) Additive inverses: There exists an element -a such that $a+(-a)=0$.
(0) Distributive Property $a(b+c)=a b+a c$.

Example: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$. Not \mathbb{N}

Definition of a Commutative Ring and Field

Definition: A commutative ring is a set R along with two closed operations + and \cdot such that for $a, b, c \in R$ and
(1) Associative $(a+b)+c=a+(b+c)$ and $(a b) c=a(b c)$.
(2) Commutative $a+b=b+a$ and $a b=b a$.
(3) Identities: there are [distinct] elements $0,1 \in R$ such that $a+0=a$ and $a \cdot 1=a$.
(4) Additive inverses: There exists an element -a such that $a+(-a)=0$.
(0) Distributive Property $a(b+c)=a b+a c$.

Example: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$. Not \mathbb{N}
Definition: If in addition, every nonzero element has a multiplicative inverse, that is an element a^{-1} such that $a \cdot a^{-1}=1$, we say that R is a field.

Example: \mathbb{Q}, \mathbb{R}. Not \mathbb{N} or \mathbb{Z}.

Congruence Classes

Definition: The congruence or equivalence class modulo m of an integer a is the set of integers

$$
[a]:=\{x \in \mathbb{Z}: x \equiv a \quad(\bmod m)\}
$$

:= means "defined as".
Further, define

$$
\mathbb{Z}_{m}=\mathbb{Z} / m \mathbb{Z}:=\{[0],[1], \ldots,[m-1]\}
$$

The Ring \mathbb{Z}_{m}

We turn

$$
\mathbb{Z}_{m}=\mathbb{Z} / m \mathbb{Z}:=\{[0],[1], \ldots,[m-1]\}
$$

into a ring by defining addition and subtraction and multiplication by $[a] \pm[b]:=[a \pm b]$ and $[a] \cdot[b]:=[a b]$. This makes [0] the additive identity and [1] the multiplicative identity. Note that the $[a+b]$ means add then reduce modulo m.
Definition: The members [0], [1], $\ldots,[m-1]$ are sometimes called representative members.
Definition: When $m=p$ is prime, the ring \mathbb{Z}_{p} is also a field as nonzero elements are invertible (we will see this later).

Well-Defined

Abstractly: Suppose that over \mathbb{Z}_{m}, we have that $[a]=[c]$ and $[b]=[d]$ for some $a, b, c, d \in \mathbb{Z}$. Is it true that $[a+b]=[c+d]$ and $[a b]=[c d]$?

Well-Defined

Abstractly: Suppose that over \mathbb{Z}_{m}, we have that $[a]=[c]$ and $[b]=[d]$ for some $a, b, c, d \in \mathbb{Z}$. Is it true that $[a+b]=[c+d]$ and $[a b]=[c d]$?
Concretely: As an example, in \mathbb{Z}_{6}, is it true that $[2][5]=[14][-13]$?

Well-Defined

Abstractly: Suppose that over \mathbb{Z}_{m}, we have that $[a]=[c]$ and $[b]=[d]$ for some $a, b, c, d \in \mathbb{Z}$. Is it true that $[a+b]=[c+d]$ and $[a b]=[c d]$?
Concretely: As an example, in \mathbb{Z}_{6}, is it true that $[2][5]=[14][-13]$?
Proof: Note that in \mathbb{Z}_{6}, we have

$$
\text { LHS }=[2][5]=[2 \cdot 5]=[10]=[4]
$$

and also

$$
\text { RHS }=[14][-13]=[14(-13)]=[-182]=[-2]=[4]
$$

completing the proof.

Addition Table

Addition table for \mathbb{Z}_{4}

+	$[0]$	$[1]$	$[2]$	$[3]$
$[0]$	$[0]$	$[1]$	$[2]$	$[3]$
$[1]$	$[1]$	$[2]$	$[3]$	$[0]$
$[2]$	$[2]$	$[3]$	$[0]$	$[1]$
$[3]$	$[3]$	$[0]$	$[1]$	$[2]$

Multiplication Table

Multiplication table for \mathbb{Z}_{4}

\cdot	$[0]$	$[1]$	$[2]$	$[3]$
$[0]$	$[0]$	$[0]$	$[0]$	$[0]$
$[1]$	$[0]$	$[1]$	$[2]$	$[3]$
$[2]$	$[0]$	$[2]$	$[0]$	$[2]$
$[3]$	$[0]$	$[3]$	$[2]$	$[1]$

