Carmen's Core Concepts (Math 135)

Carmen Bruni

University of Waterloo

Week 7

Carmen Bruni Carmen's Core Concepts (Math 135)

- Congruence Definition
- 2 Congruence is an Equivalence Relation (CER)
- 3 Properties of Congruence (PC)
- 4 Example
- **5** Congruences and Division (CD)
- 6 Congruent iff Same Remainder (CISR)
- 7 Example 2
- 8 Linear Congruences
- 9 Solution 1 to "Solve $4x \equiv 5 \pmod{8}$ ".
- 10 Solution 2 to "Solve $4x \equiv 5 \pmod{8}$ "
- 1 Solution 3 to "Solve $4x \equiv 5 \pmod{8}$ "
- 12 Linear Congruence Theorem 1
- 13 Simplifying Congruences

Congruence Definition

Carmen Bruni Carmen's Core Concepts (Math 135)

Definition: Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. Then a is congruent to b modulo n if and only if $n \mid (a - b)$ and we write $a \equiv b \pmod{n}$. This is equivalent to saying there exists an integer k such that a - b = kn or a = b + kn.

Example: $5 \equiv 11 \pmod{6}$, $723 \equiv -17 \pmod{20}$

Theorem: Congruence is an Equivalence Relation (CER) Let $n \in \mathbb{N}$. Let $a, b, c \in \mathbb{Z}$. Then

1 (Reflexivity)
$$a \equiv a \pmod{n}$$
.

$$(Symmetry) a \equiv b \pmod{n} \Rightarrow b \equiv a \pmod{n}.$$

(Transitivity) $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n} \Rightarrow a \equiv c \pmod{n}$.

Theorem: Properties of Congruence (PC) Let $a, a', b, b' \in \mathbb{Z}$. If $a \equiv a' \pmod{m}$ and $b \equiv b' \pmod{m}$, then

$$\bullet a + b \equiv a' + b' \pmod{m}$$

$$a - b \equiv a' - b' \pmod{m}$$

 $ab \equiv a'b' \pmod{m}$

Corollary If $a \equiv b \pmod{m}$ then $a^k \equiv b^k \pmod{m}$ for $k \in \mathbb{N}$.

Example: Is $5^9 + 62^{2000} - 14$ divisible by 7?

Example: Is $5^9 + 62^{2000} - 14$ divisible by 7?

Solution: Reduce modulo 7. By Properties of Congruence, we have

$$5^{9} + 62^{2000} - 14 \equiv (-2)^{9} + (-1)^{2000} - 0 \pmod{7}$$
$$\equiv -2^{9} + 1 \pmod{7}$$
$$\equiv -(2^{3})^{3} + 1 \pmod{7}$$
$$\equiv -(8)^{3} + 1 \pmod{7}$$
$$\equiv -(1)^{3} + 1 \pmod{7}$$
$$\equiv 0 \pmod{7}$$

Therefore, the number is divisible by 7.

Proposition: (Congruences and Division (CD)). Let $a, b, c \in \mathbb{Z}$ and let $n \in \mathbb{N}$. If $ac \equiv bc \pmod{n}$ and gcd(c, n) = 1, then $a \equiv b \pmod{n}$.

Proposition: (Congruences and Division (CD)). Let $a, b, c \in \mathbb{Z}$ and let $n \in \mathbb{N}$. If $ac \equiv bc \pmod{n}$ and gcd(c, n) = 1, then $a \equiv b \pmod{n}$.

Proof: By assumption, $n \mid (ac - bc)$ so $n \mid c(a - b)$. Since gcd(c, n) = 1, by Coprimeness and Divisibility (CAD), $n \mid (a - b)$. Hence $a \equiv b \pmod{n}$.

Congruent iff Same Remainder (CISR)

Proposition: (Congruent iff Same Remainder (CISR)) Let $a, b \in \mathbb{Z}$. Then $a \equiv b \pmod{n}$ if and only if a and b have the same remainder after division by n.

Congruent iff Same Remainder (CISR)

Proposition: (Congruent iff Same Remainder (CISR)) Let $a, b \in \mathbb{Z}$. Then $a \equiv b \pmod{n}$ if and only if a and b have the same remainder after division by n.

Proof: By the Division Algorithm, write $a = nq_a + r_a$ and $b = nq_b + r_b$ where $0 \le r_a, r_b < n$. Subtracting gives

$$a-b=n(q_a-q_b)+r_a-r_b$$

(⇒) First assume that $a \equiv b \pmod{n}$, that is $n \mid a - b$. Since $n \mid n(q_a - q_b)$, we have by Divisibility of Integer Combinations that $n \mid (a - b) + n(q_a - q_b)(-1)$ and thus, $n \mid r_a - r_b$. By our restriction on the remainders, we see that the difference is bounded by $-n + 1 \leq r_a - r_b \leq n - 1$. However, only 0 is divisible by n in this range! Since $n \mid (r_a - r_b)$, we must have that $r_a - r_b = 0$. Hence $r_a = r_b$. (⇐) Assume that $r_a - r_b = n(q_a - q_b) + r_a - r_b = n(q_a - q_b)$, we see that $n \mid (a - b)$

and hence $a \equiv b \pmod{n}$.

What is the remainder when $77^{100}(999) - 6^{83}$ is divided by 4?

Example 2

What is the remainder when $77^{100}(999) - 6^{83}$ is divided by 4? **Solution:** Notice that

$$6 = 4(1) + 2$$
 $77 = 19(4) + 1$ $999 = 249(4) + 3$

Hence, by (CISR), we have 6 \equiv 2 (mod 4), 77 \equiv 1 (mod 4) and 999 \equiv 3 (mod 4). Thus, by (PC),

$$77^{100}(999) - 6^{83} \equiv (1)^{100}(3) - 2^{83} \pmod{4}$$
$$\equiv 3 - 2^2 \cdot 2^{81} \pmod{4}$$
$$\equiv 3 - 4 \cdot 2^{81} \pmod{4}$$
$$\equiv 3 - 0(2^{81}) \pmod{4}$$
$$\equiv 3 \pmod{4}$$

Once again by (CISR), 3 is the remainder when $77^{100}(999) - 6^{83}$ is divided by 4.

Question: Solve $ax \equiv c \pmod{m}$ where $a, c \in \mathbb{Z}$ and $m \in \mathbb{N}$ for $x \in \mathbb{Z}$.

Note: When we are solving ax = c over the integers, we know that this has a solution if and only if $a \mid c$.

Example: Solve $4x \equiv 5 \pmod{8}$.

 By definition, there exists a z ∈ Z such that 4x - 5 = 8z, that is, 4x - 8z = 5. Now, let y = -z. Thus, the original question is equivalent to solving the Linear Diophantine Equation

$$4x + 8y = 5$$

 Since gcd(4,8) = 4 ∤ 5, by LDET1, we see that this LDE has no solution. Hence the original congruence has no solutions.

Solution 2 to "Solve $4x \equiv 5 \pmod{8}$ "

Let $x \in \mathbb{Z}$. By the Division Algorithm, x = 8q + r for some $0 \le r \le 7$ and q, r integers. By Congruent If and Only If Same Remainder, $4x \equiv 5 \pmod{8}$ holds if and only if $4r \equiv 5 \pmod{8}$. Thus, if we can prove that no number from $0 \le x \le 7$ works, then no integer x can satisfy the congruence. Trying the possibilities

$4(0) \equiv 0$	(mod 8)
$4(1) \equiv 4$	(mod 8)
$4(2) \equiv 0$	(mod 8)
$4(3) \equiv 4$	(mod 8)
$4(4) \equiv 0$	(mod 8)
$4(5) \equiv 4$	(mod 8)
$4(6) \equiv 0$	(mod 8)
$4(7) \equiv 4$	(mod 8)

shows that $4x \equiv 5 \pmod{8}$ has no solution.

Assume towards a contradiction that there exists an integer x such that $4x \equiv 5 \pmod{8}$. Multiply both sides by 2 to get (by Properties of Congruence) that

$$0 \equiv 0x \equiv 8x \equiv 10 \pmod{8}$$

Hence, 8 | 10 however 8 \nmid 10. This is a contradiction. Thus, there are no integer solutions to $4x \equiv 5 \pmod{8}$.

Theorem: LCT1 (Linear Congruence Theorem 1). Let $a, c \in \mathbb{Z}$ and $m \in \mathbb{N}$ and gcd(a, m) = d. Then $ax \equiv c \pmod{m}$ has a solution if and only if $d \mid c$. Further, we have d solutions modulo m and 1 solution modulo m/d. Moreover, if $x = x_0$ is a solution, then $x \equiv x_0 \pmod{m/d}$ forms the complete solution set or alternatively, $x = x_0 + \frac{m}{d}n$ for all $n \in \mathbb{Z}$ or for another alternative way to write the solution:

$$x \equiv x_0, x_0 + \frac{m}{d}, x_0 + 2\frac{m}{d}, ..., x_0 + (d-1)\frac{m}{d} \pmod{m}$$

This is a restatement of LDET1

If $x \equiv 2,5 \pmod{6}$, then $x \equiv 2 \pmod{3}$ gives the same solution set.

If $x \equiv 2,5 \pmod{6}$, then $x \equiv 2 \pmod{3}$ gives the same solution set.

This is true since if $x \equiv 2, 5 \pmod{6}$, then x = 2 + 6k or x = 5 + 6k for some integer k. In either case, $3 \mid (x - 2)$ or $3 \mid (x - 5)$ since $3 \mid 6$. Hence, $x \equiv 2 \pmod{3}$ or $x \equiv 5 \equiv 2 \pmod{3}$. In reverse, if $x \equiv 2 \pmod{3}$, then x = 2 + 3k for some integer k. Now, since 6/3 = 2, we look at the remainder of k when divided by 2. If the remainder is 0, then $k = 2\ell$ for some integer ℓ and hence $x = 2 + 6\ell$ and so $x \equiv 2 \pmod{6}$. Now, if the remainder when k is divided by 2 is 1, then write $k = 2\ell + 1$ for some integer ℓ . Hence, $x = 2 + 3(2\ell + 1)$ giving $x = 5 + 6\ell$ and thus $x \equiv 5 \pmod{6}$.