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Congruence Definition

Definition: Let a, b ∈ Z and n ∈ N. Then a is congruent to b
modulo n if and only if n | (a− b) and we write a ≡ b (mod n).
This is equivalent to saying there exists an integer k such that
a− b = kn or a = b + kn.

Example: 5 ≡ 11 (mod 6), 723 ≡ −17 (mod 20)

Carmen Bruni Carmen’s Core Concepts (Math 135)



Congruence Definition

Definition: Let a, b ∈ Z and n ∈ N. Then a is congruent to b
modulo n if and only if n | (a− b) and we write a ≡ b (mod n).
This is equivalent to saying there exists an integer k such that
a− b = kn or a = b + kn.

Example: 5 ≡ 11 (mod 6), 723 ≡ −17 (mod 20)

Carmen Bruni Carmen’s Core Concepts (Math 135)



Congruence is an Equivalence Relation (CER)

Theorem: Congruence is an Equivalence Relation (CER)

Let n ∈ N. Let a, b, c ∈ Z. Then

1 (Reflexivity) a ≡ a (mod n).

2 (Symmetry) a ≡ b (mod n)⇒ b ≡ a (mod n).

3 (Transitivity) a ≡ b (mod n) and b ≡ c (mod n)⇒ a ≡ c
(mod n).
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Properties of Congruence (PC)

Theorem: Properties of Congruence (PC) Let a, a′, b, b′ ∈ Z.
If a ≡ a′ (mod m) and b ≡ b′ (mod m), then

1 a + b ≡ a′ + b′ (mod m)

2 a− b ≡ a′ − b′ (mod m)

3 ab ≡ a′b′ (mod m)

Corollary If a ≡ b (mod m) then ak ≡ bk (mod m) for k ∈ N.
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Example

Example: Is 59 + 622000 − 14 divisible by 7?

Solution: Reduce modulo 7. By Properties of Congruence, we
have

59 + 622000 − 14 ≡ (−2)9 + (−1)2000 − 0 (mod 7)

≡ −29 + 1 (mod 7)

≡ −(23)3 + 1 (mod 7)

≡ −(8)3 + 1 (mod 7)

≡ −(1)3 + 1 (mod 7)

≡ 0 (mod 7)

Therefore, the number is divisible by 7.
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Congruences and Division (CD)

Proposition: (Congruences and Division (CD)). Let a, b, c ∈ Z
and let n ∈ N. If ac ≡ bc (mod n) and gcd(c, n) = 1, then a ≡ b
(mod n).

Proof: By assumption, n | (ac − bc) so n | c(a− b). Since
gcd(c , n) = 1, by Coprimeness and Divisibility (CAD), n | (a− b).
Hence a ≡ b (mod n).
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Congruent iff Same Remainder (CISR)

Proposition: (Congruent iff Same Remainder (CISR)) Let
a, b ∈ Z. Then a ≡ b (mod n) if and only if a and b have the
same remainder after division by n.

Proof: By the Division Algorithm, write a = nqa + ra and
b = nqb + rb where 0 ≤ ra, rb < n. Subtracting gives

a− b = n(qa − qb) + ra − rb

(⇒) First assume that a ≡ b (mod n), that is n | a− b. Since
n | n(qa − qb), we have by Divisibility of Integer Combinations that
n | (a− b) + n(qa − qb)(−1) and thus, n | ra − rb. By our
restriction on the remainders, we see that the difference is bounded
by −n + 1 ≤ ra − rb ≤ n − 1. However, only 0 is divisible by n in
this range! Since n | (ra − rb), we must have that ra − rb = 0.
Hence ra = rb.

(⇐) Assume that ra = rb. Noting that the difference a− b yields
a− b = n(qa − qb) + ra − rb = n(qa − qb), we see that n | (a− b)
and hence a ≡ b (mod n). �
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Example 2

What is the remainder when 77100(999)− 683 is divided by 4?

Solution: Notice that

6 = 4(1) + 2 77 = 19(4) + 1 999 = 249(4) + 3

Hence, by (CISR), we have 6 ≡ 2 (mod 4), 77 ≡ 1 (mod 4) and
999 ≡ 3 (mod 4). Thus, by (PC),

77100(999)− 683 ≡ (1)100(3)− 283 (mod 4)

≡ 3− 22 · 281 (mod 4)

≡ 3− 4 · 281 (mod 4)

≡ 3− 0(281) (mod 4)

≡ 3 (mod 4)

Once again by (CISR), 3 is the remainder when 77100(999)− 683 is
divided by 4. �

Carmen Bruni Carmen’s Core Concepts (Math 135)



Example 2

What is the remainder when 77100(999)− 683 is divided by 4?

Solution: Notice that

6 = 4(1) + 2 77 = 19(4) + 1 999 = 249(4) + 3

Hence, by (CISR), we have 6 ≡ 2 (mod 4), 77 ≡ 1 (mod 4) and
999 ≡ 3 (mod 4). Thus, by (PC),

77100(999)− 683 ≡ (1)100(3)− 283 (mod 4)

≡ 3− 22 · 281 (mod 4)

≡ 3− 4 · 281 (mod 4)

≡ 3− 0(281) (mod 4)

≡ 3 (mod 4)

Once again by (CISR), 3 is the remainder when 77100(999)− 683 is
divided by 4. �

Carmen Bruni Carmen’s Core Concepts (Math 135)



Linear Congruences

Question: Solve ax ≡ c (mod m) where a, c ∈ Z and m ∈ N for
x ∈ Z.

Note: When we are solving ax = c over the integers, we know
that this has a solution if and only if a | c.

Example: Solve 4x ≡ 5 (mod 8).
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Solution 1 to “Solve 4x ≡ 5 (mod 8)”.

By definition, there exists a z ∈ Z such that 4x − 5 = 8z , that
is, 4x − 8z = 5. Now, let y = −z . Thus, the original question
is equivalent to solving the Linear Diophantine Equation

4x + 8y = 5

Since gcd(4, 8) = 4 - 5, by LDET1, we see that this LDE has
no solution. Hence the original congruence has no solutions.
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Solution 2 to “Solve 4x ≡ 5 (mod 8)”

Let x ∈ Z. By the Division Algorithm, x = 8q + r for some
0 ≤ r ≤ 7 and q, r integers. By Congruent If and Only If Same
Remainder, 4x ≡ 5 (mod 8) holds if and only if 4r ≡ 5 (mod 8).
Thus, if we can prove that no number from 0 ≤ x ≤ 7 works, then
no integer x can satisfy the congruence. Trying the possibilities

4(0) ≡ 0 (mod 8)

4(1) ≡ 4 (mod 8)

4(2) ≡ 0 (mod 8)

4(3) ≡ 4 (mod 8)

4(4) ≡ 0 (mod 8)

4(5) ≡ 4 (mod 8)

4(6) ≡ 0 (mod 8)

4(7) ≡ 4 (mod 8)

shows that 4x ≡ 5 (mod 8) has no solution. �
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Solution 3 to “Solve 4x ≡ 5 (mod 8)”

Assume towards a contradiction that there exists an integer x such
that 4x ≡ 5 (mod 8). Multiply both sides by 2 to get (by
Properties of Congruence) that

0 ≡ 0x ≡ 8x ≡ 10 (mod 8)

Hence, 8 | 10 however 8 - 10. This is a contradiction. Thus, there
are no integer solutions to 4x ≡ 5 (mod 8). �

Carmen Bruni Carmen’s Core Concepts (Math 135)



Linear Congruence Theorem 1

Theorem: LCT1 (Linear Congruence Theorem 1). Let a, c ∈ Z
and m ∈ N and gcd(a,m) = d . Then ax ≡ c (mod m) has a
solution if and only if d | c . Further, we have d solutions modulo
m and 1 solution modulo m/d . Moreover, if x = x0 is a solution,
then x ≡ x0 (mod m/d) forms the complete solution set or
alternatively, x = x0 + m

d n for all n ∈ Z or for another alternative
way to write the solution:

x ≡ x0, x0 + m
d , x0 + 2m

d , ..., x0 + (d − 1)md (mod m)

This is a restatement of LDET1
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Simplifying Congruences

If x ≡ 2, 5 (mod 6), then x ≡ 2 (mod 3) gives the same solution
set.

This is true since if x ≡ 2, 5 (mod 6), then x = 2 + 6k or
x = 5 + 6k for some integer k . In either case, 3 | (x − 2) or
3 | (x − 5) since 3 | 6. Hence, x ≡ 2 (mod 3) or x ≡ 5 ≡ 2
(mod 3). In reverse, if x ≡ 2 (mod 3), then x = 2 + 3k for some
integer k . Now, since 6/3 = 2, we look at the remainder of k when
divided by 2. If the remainder is 0, then k = 2` for some integer `
and hence x = 2 + 6` and so x ≡ 2 (mod 6). Now, if the
remainder when k is divided by 2 is 1, then write k = 2` + 1 for
some integer `. Hence, x = 2 + 3(2` + 1) giving x = 5 + 6` and
thus x ≡ 5 (mod 6).
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