Carmen's Core Concepts (Math 135)

Carmen Bruni

University of Waterloo

Week 7

(1) Congruence Definition
(2) Congruence is an Equivalence Relation (CER)
(3) Properties of Congruence (PC)
(4) Example
(5) Congruences and Division (CD)
(6) Congruent iff Same Remainder (CISR)
(7) Example 2
(8) Linear Congruences
(9) Solution 1 to "Solve $4 x \equiv 5(\bmod 8)$ ".
(10) Solution 2 to "Solve $4 x \equiv 5(\bmod 8)$ "
(11) Solution 3 to "Solve $4 x \equiv 5(\bmod 8)$ "
(12) Linear Congruence Theorem 1
(13) Simplifying Congruences

Congruence Definition

Congruence Definition

Definition: Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. Then a is congruent to b modulo n if and only if $n \mid(a-b)$ and we write $a \equiv b(\bmod n)$. This is equivalent to saying there exists an integer k such that $a-b=k n$ or $a=b+k n$.

Example: $5 \equiv 11(\bmod 6), 723 \equiv-17(\bmod 20)$

Congruence is an Equivalence Relation (CER)

Theorem: Congruence is an Equivalence Relation (CER) Let $n \in \mathbb{N}$. Let $a, b, c \in \mathbb{Z}$. Then
(1) (Reflexivity) $a \equiv a(\bmod n)$.
(2) (Symmetry) $a \equiv b(\bmod n) \Rightarrow b \equiv a(\bmod n)$.
(3) (Transitivity) $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n) \Rightarrow a \equiv c$ $(\bmod n)$.

Properties of Congruence (PC)

Theorem: Properties of Congruence (PC) Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{Z}$. If $a \equiv a^{\prime}(\bmod m)$ and $b \equiv b^{\prime}(\bmod m)$, then
(1) $a+b \equiv a^{\prime}+b^{\prime}(\bmod m)$
(2) $a-b \equiv a^{\prime}-b^{\prime}(\bmod m)$
(3) $a b \equiv a^{\prime} b^{\prime}(\bmod m)$

Corollary If $a \equiv b(\bmod m)$ then $a^{k} \equiv b^{k}(\bmod m)$ for $k \in \mathbb{N}$.

Example

Example: Is $5^{9}+62^{2000}-14$ divisible by 7 ?

Example

Example: Is $5^{9}+62^{2000}-14$ divisible by 7 ?
Solution: Reduce modulo 7. By Properties of Congruence, we have

$$
\begin{aligned}
5^{9}+62^{2000}-14 & \equiv(-2)^{9}+(-1)^{2000}-0 \quad(\bmod 7) \\
& \equiv-2^{9}+1 \quad(\bmod 7) \\
& \equiv-\left(2^{3}\right)^{3}+1 \quad(\bmod 7) \\
& \equiv-(8)^{3}+1 \quad(\bmod 7) \\
& \equiv-(1)^{3}+1 \quad(\bmod 7) \\
& \equiv 0 \quad(\bmod 7)
\end{aligned}
$$

Therefore, the number is divisible by 7 .

Congruences and Division (CD)

Proposition: (Congruences and Division (CD)). Let $a, b, c \in \mathbb{Z}$ and let $n \in \mathbb{N}$. If $a c \equiv b c(\bmod n)$ and $\operatorname{gcd}(c, n)=1$, then $a \equiv b$ $(\bmod n)$.

Congruences and Division (CD)

Proposition: (Congruences and Division (CD)). Let $a, b, c \in \mathbb{Z}$ and let $n \in \mathbb{N}$. If $a c \equiv b c(\bmod n)$ and $\operatorname{gcd}(c, n)=1$, then $a \equiv b$ $(\bmod n)$.

Proof: By assumption, $n \mid(a c-b c)$ so $n \mid c(a-b)$. Since $\operatorname{gcd}(c, n)=1$, by Coprimeness and Divisibility (CAD), $n \mid(a-b)$. Hence $a \equiv b(\bmod n)$.

Congruent iff Same Remainder (CISR)

Proposition: (Congruent iff Same Remainder (CISR)) Let $a, b \in \mathbb{Z}$. Then $a \equiv b(\bmod n)$ if and only if a and b have the same remainder after division by n.

Congruent iff Same Remainder (CISR)

Proposition: (Congruent iff Same Remainder (CISR)) Let $a, b \in \mathbb{Z}$. Then $a \equiv b(\bmod n)$ if and only if a and b have the same remainder after division by n.
Proof: By the Division Algorithm, write $a=n q_{a}+r_{a}$ and $b=n q_{b}+r_{b}$ where $0 \leq r_{a}, r_{b}<n$. Subtracting gives

$$
a-b=n\left(q_{a}-q_{b}\right)+r_{a}-r_{b}
$$

(\Rightarrow) First assume that $a \equiv b(\bmod n)$, that is $n \mid a-b$. Since $n \mid n\left(q_{a}-q_{b}\right)$, we have by Divisibility of Integer Combinations that $n \mid(a-b)+n\left(q_{a}-q_{b}\right)(-1)$ and thus, $n \mid r_{a}-r_{b}$. By our restriction on the remainders, we see that the difference is bounded by $-n+1 \leq r_{a}-r_{b} \leq n-1$. However, only 0 is divisible by n in this range! Since $n \mid\left(r_{a}-r_{b}\right)$, we must have that $r_{a}-r_{b}=0$. Hence $r_{a}=r_{b}$.
(\Leftarrow) Assume that $r_{a}=r_{b}$. Noting that the difference $a-b$ yields $a-b=n\left(q_{a}-q_{b}\right)+r_{a}-r_{b}=n\left(q_{a}-q_{b}\right)$, we see that $n \mid(a-b)$ and hence $a \equiv b(\bmod n)$.

Example 2

What is the remainder when $77^{100}(999)-6^{83}$ is divided by 4 ?

Example 2

What is the remainder when $77^{100}(999)-6^{83}$ is divided by 4 ?
Solution: Notice that

$$
6=4(1)+2 \quad 77=19(4)+1 \quad 999=249(4)+3
$$

Hence, by $($ CISR $)$, we have $6 \equiv 2(\bmod 4), 77 \equiv 1(\bmod 4)$ and $999 \equiv 3(\bmod 4)$. Thus, by $(P C)$,

$$
\begin{aligned}
77^{100}(999)-6^{83} & \equiv(1)^{100}(3)-2^{83} \quad(\bmod 4) \\
& \equiv 3-2^{2} \cdot 2^{81} \quad(\bmod 4) \\
& \equiv 3-4 \cdot 2^{81} \quad(\bmod 4) \\
& \equiv 3-0\left(2^{81}\right) \quad(\bmod 4) \\
& \equiv 3 \quad(\bmod 4)
\end{aligned}
$$

Once again by (CISR), 3 is the remainder when $77^{100}(999)-6^{83}$ is divided by 4.

Linear Congruences

Question: Solve $a x \equiv c(\bmod m)$ where $a, c \in \mathbb{Z}$ and $m \in \mathbb{N}$ for $x \in \mathbb{Z}$.

Note: When we are solving $a x=c$ over the integers, we know that this has a solution if and only if $a \mid c$.

Example: Solve $4 x \equiv 5(\bmod 8)$.

Solution 1 to "Solve $4 x \equiv 5(\bmod 8)$ ".

- By definition, there exists a $z \in \mathbb{Z}$ such that $4 x-5=8 z$, that is, $4 x-8 z=5$. Now, let $y=-z$. Thus, the original question is equivalent to solving the Linear Diophantine Equation

$$
4 x+8 y=5
$$

- Since $\operatorname{gcd}(4,8)=4 \nmid 5$, by LDET1, we see that this LDE has no solution. Hence the original congruence has no solutions.

Solution 2 to "Solve $4 x \equiv 5(\bmod 8)$ "

Let $x \in \mathbb{Z}$. By the Division Algorithm, $x=8 q+r$ for some $0 \leq r \leq 7$ and q, r integers. By Congruent If and Only If Same Remainder, $4 x \equiv 5(\bmod 8)$ holds if and only if $4 r \equiv 5(\bmod 8)$. Thus, if we can prove that no number from $0 \leq x \leq 7$ works, then no integer x can satisfy the congruence. Trying the possibilities

$$
\begin{aligned}
& 4(0) \equiv 0 \quad(\bmod 8) \\
& 4(1) \equiv 4 \quad(\bmod 8) \\
& 4(2) \equiv 0 \quad(\bmod 8) \\
& 4(3) \equiv 4 \quad(\bmod 8) \\
& 4(4) \equiv 0 \quad(\bmod 8) \\
& 4(5) \equiv 4 \quad(\bmod 8) \\
& 4(6) \equiv 0 \\
& 4(7)\equiv 4 \bmod 8) \\
& 4(\bmod 8)
\end{aligned}
$$

shows that $4 x \equiv 5(\bmod 8)$ has no solution.

Solution 3 to "Solve $4 x \equiv 5(\bmod 8)$ "

Assume towards a contradiction that there exists an integer x such that $4 x \equiv 5(\bmod 8)$. Multiply both sides by 2 to get (by Properties of Congruence) that

$$
0 \equiv 0 x \equiv 8 x \equiv 10 \quad(\bmod 8)
$$

Hence, $8 \mid 10$ however $8 \nmid 10$. This is a contradiction. Thus, there are no integer solutions to $4 x \equiv 5(\bmod 8)$.

Linear Congruence Theorem 1

Theorem: LCT1 (Linear Congruence Theorem 1). Let $a, c \in \mathbb{Z}$ and $m \in \mathbb{N}$ and $\operatorname{gcd}(a, m)=d$. Then $a x \equiv c(\bmod m)$ has a solution if and only if $d \mid c$. Further, we have d solutions modulo m and 1 solution modulo m / d. Moreover, if $x=x_{0}$ is a solution, then $x \equiv x_{0}(\bmod m / d)$ forms the complete solution set or alternatively, $x=x_{0}+\frac{m}{d} n$ for all $n \in \mathbb{Z}$ or for another alternative way to write the solution:

$$
x \equiv x_{0}, x_{0}+\frac{m}{d}, x_{0}+2 \frac{m}{d}, \ldots, x_{0}+(d-1) \frac{m}{d} \quad(\bmod m)
$$

This is a restatement of LDET1

Simplifying Congruences

If $x \equiv 2,5(\bmod 6)$, then $x \equiv 2(\bmod 3)$ gives the same solution set.

Simplifying Congruences

If $x \equiv 2,5(\bmod 6)$, then $x \equiv 2(\bmod 3)$ gives the same solution set.
This is true since if $x \equiv 2,5(\bmod 6)$, then $x=2+6 k$ or $x=5+6 k$ for some integer k. In either case, $3 \mid(x-2)$ or $3 \mid(x-5)$ since $3 \mid 6$. Hence, $x \equiv 2(\bmod 3)$ or $x \equiv 5 \equiv 2$
$(\bmod 3)$. In reverse, if $x \equiv 2(\bmod 3)$, then $x=2+3 k$ for some integer k. Now, since $6 / 3=2$, we look at the remainder of k when divided by 2 . If the remainder is 0 , then $k=2 \ell$ for some integer ℓ and hence $x=2+6 \ell$ and so $x \equiv 2(\bmod 6)$. Now, if the remainder when k is divided by 2 is 1 , then write $k=2 \ell+1$ for some integer ℓ. Hence, $x=2+3(2 \ell+1)$ giving $x=5+6 \ell$ and thus $x \equiv 5(\bmod 6)$.

