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Extended Euclidean Algorithm

Gives a fast way to compute gcd(a, b) and integers x and y
such that

gcd(a, b) = ax + by
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Extended Euclidean Algorithm Example

Find x , y ∈ Z such that 506x + 391y = gcd(506, 391).

x y r q

1 0 506 0
0 1 391 0
1 -1 115

⌊
506
391

⌋
= 1

-3 4 46
⌊
391
115

⌋
= 3

7 -9 23
⌊
115
46

⌋
= 2

-17 22 0
⌊
46
23

⌋
= 2

Therefore, 506(7) + 391(−9) = 23 = gcd(506, 391).

Carmen Bruni Carmen’s Core Concepts (Math 135)



Extended Euclidean Algorithm Example

Find x , y ∈ Z such that 506x + 391y = gcd(506, 391).

x y r q

1 0 506 0
0 1 391 0
1 -1 115

⌊
506
391

⌋
= 1

-3 4 46
⌊
391
115

⌋
= 3

7 -9 23
⌊
115
46

⌋
= 2

-17 22 0
⌊
46
23

⌋
= 2

Therefore, 506(7) + 391(−9) = 23 = gcd(506, 391).

Carmen Bruni Carmen’s Core Concepts (Math 135)



Notes on EEA

1 Bézout’s Lemma is the Extended Euclidean Algorithm in the
textbook.

2 With gcd(a, b), what if
1 b > a? Then swap a and b. This works since

gcd(a, b) = gcd(b, a).
2 a < 0 or b < 0? Solution is to make all the terms positive.

This works since

gcd(a, b) = gcd(|a|, |b|).

3 In practice, one can accomplish these goals by changing the
headings then accounting for this in the final steps. (Examples
can be found on the lecture notes on EEA)
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Fundamental Theorem of Arithmetic (UFT)

Suppose that n > 1 is an integer. Then n can be factored uniquely
as a product of prime numbers up to reordering of prime numbers.
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Divisors From Prime Factorization (DFPF)

Theorem: Divisors From Prime Factorization (DFPF). Let

n =
k∏

i=1

pαi
i where each αi ≥ 1 is an integer. Then d is a positive

divisor of n if and only if a prime factorization of d can be given by

d =
k∏

i=1

pδii where δi ∈ Z, 0 ≤ δi ≤ αi for 1 ≤ i ≤ k

Example: Positive divisors of 63 = 32 · 7 are given by

30 · 70, 30 · 71, 31 · 70, 31 · 71, 32 · 70, 32 · 71

or
1, 7, 3, 21, 9, 63
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GCD From Prime Factors (GCDPF)

Theorem: GCD From Prime Factors (GCDPF). If

a =
k∏

i=1

pαi
i b =

k∏
i=1

pβii .

where 0 ≤ αi and 0 ≤ βi are integers and the pi are distinct
primes, then

gcd(a, b) =
k∏

i=1

pmi
i

where mi = min{αi , βi} for 1 ≤ i ≤ k .

Example:

gcd(20000, 30000) = gcd(25 · 30 · 54, 24 · 31 · 54)

= 2min{4,5} · 3min{0,1} · 5min{4,4}

= 24 · 54

= 10000
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Tips for GCD Problems

When tackling a GCD type problem, try the following tips in order

(HWY 401) Use key theorems especially the following:

Bézout’s Theorem (EEA) [Good when gcd is in hypothesis].
GCDWR [Good when terms in gcd depend on each other;
good for computations].
GCDCT [Good when gcd is in conclusion].

(HWY 7) Use the definition of gcd.

(Flying) Use prime factorizations.
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Linear Diophantine Equation (LDE)

We want to solve ax + by = c where a, b, c ∈ Z under the
condition that x , y ∈ Z

Relate to the equation of a line

y = −ax
b + c

b
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LDET1

Theorem: (LDET1) Let d = gcd(a, b). The LDE

ax + by = c

has a solution if and only if d | c .

Proof: (⇒) Assume that ax + by = c has an integer solution, say
x0, y0 ∈ Z. Since d | a and d | b, by Divisibility of Integer
Combinations, we have that d | (ax0 + by0) = c .

(⇐) Assume that d | c. Then, there exists an integer k such that
dk = c . By Bézout’s Lemma, there exist integers u and v such
that au + bv = gcd(a, b) = d . Multiplying by k gives

a(uk) + b(vk) = dk = c

Therefore, a solution is given by x = uk and y = vk . �
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LDET2

(LDET2) Let d = gcd(a, b) where a 6= 0 and b 6= 0. If
(x , y) = (x0, y0) is a solution to the LDE ax + by = c then all
solutions are given by {(x0 + b

d n, y0 −
a
d n) : n ∈ Z}

Proof: Note that the above are actually solutions to the LDE. It
suffices to show that these are all the solutions. Let (x , y) be a
different solution to the LDE (other than (x0, y0)). Then,

ax + by = c and ax0 + by0 = c

Subtracting gives
a(x − x0) = −b(y − y0) =⇒ a

d (x − x0) = −b
d (y − y0)

Now, since gcd( a
d ,

b
d ) = 1 (by DBGCD) and since

b
d |
−b
d (y − y0) = a

d (x − x0).

By CAD b
d | (x − x0). Thus, ∃n ∈ Z such that x = x0 + b

d n. Hence

a
d (x − x0) = −b

d (y − y0) =⇒ a
d ·

b
d n = −b

d (y − y0)

Hence, y = y0 − a
d n completing the proof. �
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LDE Example

Solve the LDE 20x + 35y = 15.

Solution: Since gcd(20, 35) = 5 and 5 | 15, we see by LDET1
that we have a solution. Notice here that we can simplify the LDE
by dividing by 5 first to give

4x + 7y = 3

An easy solution is given by x = −1 and y = 1. To find all
solutions, we invoke LDET2 to see that all solutions are given by

x = −1 +
7

gcd(4, 7)
n y = 1− 4

gcd(4, 7)
n

for all integers n. Note this is equivalent to the solution set

x = −1− 7

gcd(4, 7)
n y = 1 +

4

gcd(4, 7)
n
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The most important definition in this course

Definition: Let m ∈ N. We say that two integers a and b are
congruent modulo m if and only if m | (a− b) and we write

a ≡ b (mod m).

If m - (a− b), we write a 6≡ b (mod m).

Commit the previous definition to memory!!!

Examples: 3 ≡ 7 (mod 4), 10 ≡ −8 (mod 9), 4 ≡ 4 (mod 6)
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