Carmen's Core Concepts (Math 135)

Carmen Bruni

University of Waterloo

Week 5

Carmen Bruni Carmen's Core Concepts (Math 135)

- Euclid's Theorem [INF P]
- 2 Greatest Common Divisor
- 3 GCD With Remainder [GCDWR]
- 4 Euclidean Algorithm
- 5 Back Substitution
- 6 Bézout's Lemma [EEA]
- GCD Characterization Theorem [GCDCT]
- 8 Mixed Examples
- 9 Mixed Examples
- 🔟 Good Tip
- Euclid's Lemma or Primes and Divisibility [PAD]
- GCD of One [GCDOO]
- 13 Division by the GCD [DBGCD]
- Generation Coprimeness and Divisibility [CAD]

15 Summary

Euclid's Theorem [INF P]

- There exist infinitely many primes
- Idea: Argue by contradiction that there are finitely many primes and consider the number

$$N = 1 + \prod_{i=1}^{n} p_i$$

• Then note by Divisibility of Integer Combinations that

$$p \left| \left(N - \prod_{i=1}^n p_i \right) = 1 \right.$$

Definition: The greatest common divisor of integers a and b with a ≠ 0 or b ≠ 0 is an integer d > 0 such that

$$\mathbf{0} \quad d \mid a \text{ and } d \mid b$$

2 If
$$c \mid a$$
 and $c \mid b$, then $c \leq d$

We write $d = \gcd(a, b)$.

- gcd(120, 84) = 12, gcd(0, 0) = 0, gcd(a, b) = gcd(b, a), gcd(a, a) = |a| = gcd(a, 0)
- gcd(a, b) exists and is unique.

GCD With Remainder [GCDWR]

- Theorem: GCD With Remainder (GCDWR) If a, b, q, r ∈ Z and a = bq + r, then gcd(a, b) = gcd(b, r).
- Watch the a = b = 0 case
- Proof: Let d = gcd(a, b) and e = gcd(b, r). Since a = bq + r and d | a and d | b, by Divisibility of Integer Combinations, d | a + b(-q) and hence d | r. Thus, since e is the maximal common divisor of b and r, we see that d ≤ e.

Now, $e \mid b$ and $e \mid r$ so by Divisibility of Integer Combinations, $e \mid b(q) + r(1)$ and hence $e \mid a$. Since d is the largest divisor of a and b, we see that $e \leq d$.

Hence d = e.

Example: Compute gcd(1239, 735).

 $1239 = 735(1) + 504 \quad \text{Eqn 1}$ $725 = 504(1) + 231 \quad \text{Eqn 2}$ $504 = 231(2) + 42 \quad \text{Eqn 3}$ $231 = 42(5) + 21 \quad \text{Eqn 4}$ 42 = 21(1) + 0

gcd(1239,735) = gcd(735,504)= gcd(504,231) = gcd(231,42) = gcd(42,21) = gcd(21,0) = 21

Back Substitution

Find $x, y \in \mathbb{Z}$ such that 1239x + 735y = gcd(1239, 735).

Theorem: Let $a, b \in \mathbb{Z}$. Then there exist integers x, y such that ax + by = gcd(a, b).

Theorem: If d > 0, $d \mid a, d \mid b$ and there exist integers x and y such that ax + by = d, then d = gcd(a, b).

Theorem: If d > 0, $d \mid a$, $d \mid b$ and there exist integers x and y such that ax + by = d, then d = gcd(a, b).

Proof: Let e = gcd(a, b). Since $d \mid a$ and $d \mid b$, by definition and the maximality of e we have that $d \leq e$. Again by definition, $e \mid a$ and $e \mid b$ so by Divisibility of Integer Combinations, $e \mid (ax + by)$ implying that $e \mid d$. Thus, by Bounds by Divisibility, $|e| \leq |d|$ and since d, e > 0, we have that $e \leq d$. Hence d = e.

Example: Prove that gcd(3s + t, s) = gcd(s, t) using GCDWR.

Example: Prove that gcd(3s + t, s) = gcd(s, t) using GCDWR.

GCD With Remainder (GCDWR) If $a, b, q, r \in \mathbb{Z}$ and a = bq + r, then gcd(a, b) = gcd(b, r).

Example: Prove that gcd(3s + t, s) = gcd(s, t) using GCDWR.

GCD With Remainder (GCDWR) If $a, b, q, r \in \mathbb{Z}$ and a = bq + r, then gcd(a, b) = gcd(b, r).

Solution: Note 3s + t = (3)s + t. Thus, GCD With Remainders states that gcd(3s + t, s) = gcd(s, t) by setting a = 3s + t, b = s, q = 3 and r = t.

Example: Prove if $a, b, x, y \in \mathbb{Z}$, are such that $gcd(a, b) \neq 0$ and ax + by = gcd(a, b), then gcd(x, y) = 1.

Proof: Since $gcd(a, b) \mid a$ and $gcd(a, b) \mid b$, we divide by $gcd(a, b) \neq 0$ to see that

$$rac{a}{\gcd(a,b)}x+rac{b}{\gcd(a,b)}y=1$$

Since 1 | x and 1 | y and 1 > 0, GCD Characterization Theorem implies that gcd(x, y) = 1.

If the gcd condition appears in the hypothesis, then Bézout's Lemma (EEA) might be useful. If the gcd condition appears in the conclusion, then GCDCT might be useful.

If p is a prime and $p \mid ab$, then $p \mid a$ or $p \mid b$.

Proof: Suppose *p* is prime, $p \mid ab$ and $p \nmid a$ (possible by elimination). Since $p \nmid a$, gcd(p, a) = 1. By Bézout's Lemma, there exist $x, y \in \mathbb{Z}$ such that

$$px + ay = 1$$

 $pbx + aby = b$

Now, since $p \mid p$ and $p \mid ab$, by Divisibility of Integer Combinations, $p \mid p(bx) + ab(y)$ and hence $p \mid b$. **Proposition:** Let $a, b \in \mathbb{Z}$. Then gcd(a, b) = 1 if and only if there exists integers x and y such that ax + by = 1.

Proof: Suppose gcd(a, b) = 1. Then by Bézout's Lemma, there exists integers x and y such that ax + by = 1.

Now, suppose that there exist integers x and y such that ax + by = 1. Then since $1 \mid a$ and $1 \mid b$, then by the GCD Characterization Theorem, gcd(a, b) = 1.

Proposition: Let $a, b \in \mathbb{Z}$. If gcd(a, b) = d and $d \neq 0$, then $gcd(\frac{a}{d}, \frac{b}{d}) = 1$.

Proposition: Let $a, b \in \mathbb{Z}$. If gcd(a, b) = d and $d \neq 0$, then $gcd(\frac{a}{d}, \frac{b}{d}) = 1$.

Proof: Suppose that $gcd(a, b) = d \neq 0$. Then by Bézout's Lemma, there exist integers x and y such that ax + by = d. Dividing by the nonzero d gives $\frac{a}{d}x + \frac{b}{d}y = 1$. Thus, by GCDOO, we see that $gcd(\frac{a}{d}, \frac{b}{d}) = 1$.

Proposition: If $a, b, c \in \mathbb{Z}$ and $c \mid ab$ and gcd(a, c) = 1, then $c \mid b$.

Proposition: If $a, b, c \in \mathbb{Z}$ and $c \mid ab$ and gcd(a, c) = 1, then $c \mid b$.

Proof: Suppose that gcd(a, c) = 1 and $c \mid ab$. Since gcd(a, c) = 1, by Bézout's Lemma, there exists integers x and y such that ax + cy = 1. Multiplying by b gives abx + cby = b. Since $c \mid ab$, there exists an integer k such that ab = ck. Substituting gives ckx + cby = b. Thus c(kx + by) = b and so $c \mid b$ since $kx + by \in \mathbb{Z}$.

- Lots of theorems this week (INF P, FPF, GCDWR, EEA, PAD, GCDCT, GCDOO, DBGCD, CAD, etc.)
- Theorem Cheat Sheets are available on the Math 135 Resources Page.
- Practice recalling theorems with **and without** the cheat sheets.
- Practice mixing the use of theorems.
- Toolbox analogy.