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Euclid’s Theorem [INF P]

There exist infinitely many primes

Idea: Argue by contradiction that there are finitely many
primes and consider the number

N = 1 +
n∏

i=1

pi

Then note by Divisibility of Integer Combinations that

p

∣∣∣∣∣
(
N −

n∏
i=1

pi

)
= 1
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Greatest Common Divisor

Definition: The greatest common divisor of integers a and
b with a 6= 0 or b 6= 0 is an integer d > 0 such that

1 d | a and d | b
2 If c | a and c | b, then c ≤ d

We write d = gcd(a, b).

gcd(120, 84) = 12, gcd(0, 0) = 0, gcd(a, b) = gcd(b, a),
gcd(a, a) = |a| = gcd(a, 0)

gcd(a, b) exists and is unique.
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GCD With Remainder [GCDWR]

Theorem: GCD With Remainder (GCDWR) If a, b, q, r ∈ Z
and a = bq + r , then gcd(a, b) = gcd(b, r).

Watch the a = b = 0 case

Proof: Let d = gcd(a, b) and e = gcd(b, r). Since
a = bq + r and d | a and d | b, by Divisibility of Integer
Combinations, d | a + b(−q) and hence d | r . Thus, since e is
the maximal common divisor of b and r , we see that d ≤ e.

Now, e | b and e | r so by Divisibility of Integer Combinations,
e | b(q) + r(1) and hence e | a. Since d is the largest divisor
of a and b, we see that e ≤ d .

Hence d = e. �
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Euclidean Algorithm

Example: Compute gcd(1239, 735).

1239 = 735(1) + 504 Eqn 1

725 = 504(1) + 231 Eqn 2

504 = 231(2) + 42 Eqn 3

231 = 42(5) + 21 Eqn 4

42 = 21(1) + 0

gcd(1239, 735) = gcd(735, 504)

= gcd(504, 231)

= gcd(231, 42)

= gcd(42, 21)

= gcd(21, 0)

= 21
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Back Substitution

Find x , y ∈ Z such that 1239x + 735y = gcd(1239, 735).

1239 = 735(1) + 504 Eqn 1

725 = 504(1) + 231 Eqn 2

504 = 231(2) + 42 Eqn 3

231 = 42(5) + 21 Eqn 4

42 = 21(1) + 0

21 = 231(1) + 42(−5) By Eqn 4

= 231(1)

+ (504(1) + 231(−2))(−5) By Eqn 3

= 231(1) + 504(−5) + 231(10)

= 231(11) + 504(−5)

= (735(1) + 504(−1))(11)

+ 504(−5) By Eqn 2

= 735(11) + 504(−16)

= 735(11)

+ (1239 + 735(−1))(−16) By Eqn 1

= 735(27) + 1239(−16)
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Bézout’s Lemma [EEA]

Theorem: Let a, b ∈ Z. Then there exist integers x , y such that
ax + by = gcd(a, b).
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GCD Characterization Theorem [GCDCT]

Theorem: If d > 0, d | a, d | b and there exist integers x and y
such that ax + by = d , then d = gcd(a, b).

Proof: Let e = gcd(a, b). Since d | a and d | b, by definition and
the maximality of e we have that d ≤ e. Again by definition, e | a
and e | b so by Divisibility of Integer Combinations, e | (ax + by)
implying that e | d . Thus, by Bounds by Divisibility, |e| ≤ |d | and
since d , e > 0, we have that e ≤ d . Hence d = e. �
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Mixed Examples

Example: Prove that gcd(3s + t, s) = gcd(s, t) using GCDWR.

GCD With Remainder (GCDWR) If a, b, q, r ∈ Z and a = bq + r ,
then gcd(a, b) = gcd(b, r).

Solution: Note 3s + t = (3)s + t. Thus, GCD With Remainders
states that gcd(3s + t, s) = gcd(s, t) by setting a = 3s + t, b = s,
q = 3 and r = t. �
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Mixed Examples

Example: Prove if a, b, x , y ∈ Z, are such that gcd(a, b) 6= 0 and
ax + by = gcd(a, b), then gcd(x , y) = 1.

Proof: Since gcd(a, b) | a and gcd(a, b) | b, we divide by
gcd(a, b) 6= 0 to see that

a

gcd(a, b)
x +

b

gcd(a, b)
y = 1

Since 1 | x and 1 | y and 1 > 0, GCD Characterization Theorem
implies that gcd(x , y) = 1. �

Carmen Bruni Carmen’s Core Concepts (Math 135)



Good Tip

If the gcd condition appears in the hypothesis, then Bézout’s
Lemma (EEA) might be useful. If the gcd condition appears in the
conclusion, then GCDCT might be useful.
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Euclid’s Lemma or Primes and Divisibility [PAD]

If p is a prime and p | ab, then p | a or p | b.

Proof: Suppose p is prime, p | ab and p - a (possible by
elimination). Since p - a, gcd(p, a) = 1. By Bézout’s Lemma, there
exist x , y ∈ Z such that

px + ay = 1

pbx + aby = b

Now, since p | p and p | ab, by Divisibility of Integer
Combinations, p | p(bx) + ab(y) and hence p | b.
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GCD of One [GCDOO]

Proposition: Let a, b ∈ Z. Then gcd(a, b) = 1 if and only if
there exists integers x and y such that ax + by = 1.

Proof: Suppose gcd(a, b) = 1. Then by Bézout’s Lemma, there
exists integers x and y such that ax + by = 1.

Now, suppose that there exist integers x and y such that
ax + by = 1. Then since 1 | a and 1 | b, then by the GCD
Characterization Theorem, gcd(a, b) = 1. �
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Division by the GCD [DBGCD]

Proposition: Let a, b ∈ Z. If gcd(a, b) = d and d 6= 0, then
gcd( a

d ,
b
d ) = 1.

Proof: Suppose that gcd(a, b) = d 6= 0. Then by Bézout’s
Lemma, there exist integers x and y such that ax + by = d .
Dividing by the nonzero d gives a

d x + b
d y = 1. Thus, by GCDOO,

we see that gcd( a
d ,

b
d ) = 1. �
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Division by the GCD [DBGCD]
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Coprimeness and Divisibility [CAD]

Proposition: If a, b, c ∈ Z and c | ab and gcd(a, c) = 1, then
c | b.

Proof: Suppose that gcd(a, c) = 1 and c | ab. Since
gcd(a, c) = 1, by Bézout’s Lemma, there exists integers x and y
such that ax + cy = 1. Multiplying by b gives abx + cby = b.
Since c | ab, there exists an integer k such that ab = ck .
Substituting gives ckx + cby = b. Thus c(kx + by) = b and so
c | b since kx + by ∈ Z. �
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Coprimeness and Divisibility [CAD]

Proposition: If a, b, c ∈ Z and c | ab and gcd(a, c) = 1, then
c | b.

Proof: Suppose that gcd(a, c) = 1 and c | ab. Since
gcd(a, c) = 1, by Bézout’s Lemma, there exists integers x and y
such that ax + cy = 1. Multiplying by b gives abx + cby = b.
Since c | ab, there exists an integer k such that ab = ck .
Substituting gives ckx + cby = b. Thus c(kx + by) = b and so
c | b since kx + by ∈ Z. �

Carmen Bruni Carmen’s Core Concepts (Math 135)



Summary

Lots of theorems this week (INF P, FPF, GCDWR, EEA,
PAD, GCDCT, GCDOO, DBGCD, CAD, etc.)

Theorem Cheat Sheets are available on the Math 135
Resources Page.

Practice recalling theorems with and without the cheat
sheets.

Practice mixing the use of theorems.

Toolbox analogy.
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