Carmen's Core Concepts (Math 135)

Carmen Bruni

University of Waterloo

Week 4

(1) Principle of Mathematical Induction
(2) Example
(3) Base Case

4 Inductive Hypothesis
(5) Inductive Step
(6) When Induction Isn't Enough
(7) Principle of Strong Induction
(8) Fibonacci Sequence
(9) Euclid's Lemma
(10) Fundamental Theorem of Arithmetic
(11) Fundamental Theorem of Arithmetic - Existence Proof
(12) Fundamental Theorem of Arithmetic - Informal Uniqueness Proof

Principle of Mathematical Induction

Principle of Mathematical Induction (POMI)

Axiom: If sequence of statements $P(1), P(2), \ldots$ satisfy
(1) $P(1)$ is true
(2) For any $k \in \mathbb{N}$, if $P(k)$ is true then $P(k+1)$ is true then $P(n)$ is true for all $n \in \mathbb{N}$.

Domino Analogy

Example

Example: Prove that

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

for all $n \in \mathbb{N}$.
Proof: Let $P(n)$ be the statement that

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

holds. We prove $P(n)$ is true for all natural numbers n by the Principle of Mathematical Induction.

Base Case

Base case: When $n=1, P(1)$ is the statement that

$$
\sum_{i=1}^{1} i^{2}=\frac{(1)((1)+1)(2(1)+1)}{6}
$$

This holds since

$$
\frac{(1)((1)+1)(2(1)+1)}{6}=\frac{1(2)(3)}{6}=1=\sum_{i=1}^{1} i^{2}
$$

Inductive Hypothesis

Inductive Hypothesis. Assume that $P(k)$ is true for some $k \in \mathbb{N}$. This means that

$$
\sum_{i=1}^{k} i^{2}=\frac{k(k+1)(2 k+1)}{6}
$$

Inductive Step

Inductive Step. We now need to show that

$$
\begin{gathered}
\sum_{i=1}^{k+1} i^{2}=\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6} . \\
\begin{array}{c}
\sum_{i=1}^{k+1} i^{2}= \\
=(k+1)\left(\frac{k(2 k+1)}{6}+k+1\right)=(k+1)\left(\frac{2 k^{2}+k}{6}+\frac{6 k+6}{6}\right) \\
= \\
i=1 \\
\\
(k+1)\left(\frac{2 k^{2}+7 k+6}{6}\right)=\frac{(k+1)(k+2)(2 k+3)}{6} \\
\text { Hence, } \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \text { is true for all natural numbers } n
\end{array} .
\end{gathered}
$$

by the Principle of Mathematical Induction.

When Induction Isn't Enough

Let $\left\{x_{n}\right\}$ be a sequence defined by $x_{1}=4, x_{2}=68$ and

$$
x_{m}=2 x_{m-1}+15 x_{m-2} \quad \text { for all } m \geq 3
$$

Prove that $x_{n}=2(-3)^{n}+10 \cdot 5^{n-1}$ for $n \geq 1$.
Solution: By Induction. Base Case: For $n=1$, we have

$$
x_{1}=4=2(-3)^{1}+10 \cdot 5^{0}=2(-3)^{n}+10 \cdot 5^{n-1}
$$

Inductive Hypothesis: Assume that

$$
x_{k}=2(-3)^{k}+10 \cdot 5^{k-1}
$$

is true for some $k \in \mathbb{N}$.
Inductive Step: Now, for $k+1$,

$$
\begin{aligned}
x_{k+1} & =2 x_{k}+15 x_{k-1} & \text { Only true if } k \geq 2!!! \\
& =2\left(2(-3)^{k}+10 \cdot 5^{k-1}\right)+15 x_{k-1} & \\
& =4(-3)^{k}+20 \cdot 5^{k-1}+15 x_{k-1} & \\
& =\ldots ? &
\end{aligned}
$$

Principle of Strong Induction

Principle of Strong Induction (POSI)

Axiom: If sequence of statements $P(1), P(2), \ldots$ satisfy
(1) $P(1) \wedge P(2) \wedge \ldots \wedge P(b)$ are true for some $b \in \mathbb{N}$
(2) $P(1) \wedge P(2) \wedge \ldots \wedge P(k)$ are true implies that $P(k+1)$ is true for all $k \in \mathbb{N}(k \geq b)$
then $P(n)$ is true for all $n \in \mathbb{N}$.
For an example check out the other video.

Fibonacci Sequence

Define the Fibonacci Sequence $\left\{f_{n}\right\}$ as follows. Let $f_{1}=1$ and $f_{2}=1$ and

$$
f_{m}=f_{m-1}+f_{m-2}
$$

for all $m \geq 3$. This defines the sequence

$$
1,1,2,3,5,8,13,21,34,55,89, \ldots
$$

Euclid's Lemma

Theorem 1 (Euclid's Lemma (Primes and Divisibility PAD)).
Let $a, b \in \mathbb{Z}$ and let p be a prime number. If $p \mid a b$ then $p \mid a$ or $p \mid b$.

Corollary 2 (Generalized Euclid's Lemma).

Let $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$ and let p be a prime number. If $p \mid a_{1} a_{2} \ldots a_{n}$ then $p \mid a_{i}$ for some $1 \leq i \leq n$.

Fundamental Theorem of Arithmetic

Theorem 3 (UFT).

Every integers $n>1$ can be factored uniquely into a product of primes

Note: By convention, primes are said to be a single element product.

Fundamental Theorem of Arithmetic - Existence Proof

Assume towards a contradiction that not all numbers can be factored into a product of primes. By the Well Ordering Principle, there is a smallest such number say n. Then, either n is prime (a contradiction) or n is composite and we write $n=a b$ where $1<a, b<n$. By the minimality of n, both of a and b must be able to be factored as a product of primes. This implies that $n=a b$ can be factored into a product of primes, contradicting the definition of n. Hence every number can be factored into a product of prime numbers.

Fundamental Theorem of Arithmetic - Informal Uniqueness Proof

Suppose that n can be factored in two distinct ways. Say $n=p_{1} p_{2} \ldots p_{k}=q_{1} q_{2} \ldots q_{m}$. Since

$$
p_{1} \mid p_{1} p_{2} \ldots p_{k}=q_{1} q_{2} \ldots q_{m}
$$

by the Generalized Euclid's Lemma (Generalized Primes and Divisibility), we see that $p_{1} \mid q_{j}$ for some j. By reordering if necessary, we may swap q_{1} and q_{j} in the order so that $p_{1} \mid q_{1}$. Hence, we can divide by p_{1} to obtain

$$
p_{2} \ldots p_{k}=q_{2} \ldots q_{m} .
$$

Repeating this process shows that all the factors must match.

