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Principle of Mathematical Induction

Principle of Mathematical Induction (POMI)

Axiom: If sequence of statements P(1), P(2), ... satisfy

1 P(1) is true

2 For any k ∈ N, if P(k) is true then P(k + 1) is true

then P(n) is true for all n ∈ N.

Domino Analogy
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Example

Example: Prove that

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6

for all n ∈ N.

Proof: Let P(n) be the statement that

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6

holds. We prove P(n) is true for all natural numbers n by the
Principle of Mathematical Induction.
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Base Case

Base case: When n = 1, P(1) is the statement that

1∑
i=1

i2 =
(1)((1) + 1)(2(1) + 1)

6
.

This holds since

(1)((1) + 1)(2(1) + 1)

6
=

1(2)(3)

6
= 1 =

1∑
i=1

i2.
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Inductive Hypothesis

Inductive Hypothesis. Assume that P(k) is true for some k ∈ N.
This means that

k∑
i=1

i2 =
k(k + 1)(2k + 1)

6
.
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Inductive Step

Inductive Step. We now need to show that

k+1∑
i=1

i2 =
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6
.

k+1∑
i=1

i2 =
k∑

i=1

i2 + (k + 1)2
IH
=

k(k + 1)(2k + 1)

6
+ (k + 1)2

= (k + 1)

(
k(2k + 1)

6
+ k + 1

)
= (k + 1)

(
2k2 + k

6
+

6k + 6

6

)
= (k + 1)

(
2k2 + 7k + 6

6

)
=

(k + 1)(k + 2)(2k + 3)

6

Hence,
n∑

i=1

i2 =
n(n + 1)(2n + 1)

6
is true for all natural numbers n

by the Principle of Mathematical Induction.
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When Induction Isn’t Enough

Let {xn} be a sequence defined by x1 = 4, x2 = 68 and

xm = 2xm−1 + 15xm−2 for all m ≥ 3

Prove that xn = 2(−3)n + 10 · 5n−1 for n ≥ 1.
Solution: By Induction. Base Case: For n = 1, we have

x1 = 4 = 2(−3)1 + 10 · 50 = 2(−3)n + 10 · 5n−1.

Inductive Hypothesis: Assume that

xk = 2(−3)k + 10 · 5k−1

is true for some k ∈ N.
Inductive Step: Now, for k + 1,

xk+1 = 2xk + 15xk−1 Only true if k ≥ 2!!!

= 2(2(−3)k + 10 · 5k−1) + 15xk−1

= 4(−3)k + 20 · 5k−1 + 15xk−1

= ...?
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Principle of Strong Induction

Principle of Strong Induction (POSI)

Axiom: If sequence of statements P(1), P(2), ... satisfy

1 P(1) ∧ P(2) ∧ ... ∧ P(b) are true for some b ∈ N
2 P(1) ∧ P(2) ∧ ... ∧ P(k) are true implies that P(k + 1) is true

for all k ∈ N (k ≥ b)

then P(n) is true for all n ∈ N.

For an example check out the other video.
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Fibonacci Sequence

Define the Fibonacci Sequence {fn} as follows. Let f1 = 1 and
f2 = 1 and

fm = fm−1 + fm−2

for all m ≥ 3. This defines the sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
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Euclid’s Lemma

Theorem 1 (Euclid’s Lemma (Primes and Divisibility PAD)).

Let a, b ∈ Z and let p be a prime number. If p | ab then p | a or
p | b.

Corollary 2 (Generalized Euclid’s Lemma).

Let a1, a2, ..., an ∈ Z and let p be a prime number. If p | a1a2...an
then p | ai for some 1 ≤ i ≤ n.
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Fundamental Theorem of Arithmetic

Theorem 3 (UFT).

Every integers n > 1 can be factored uniquely into a product of
primes

Note: By convention, primes are said to be a single element
product.
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Fundamental Theorem of Arithmetic - Existence Proof

Assume towards a contradiction that not all numbers can be
factored into a product of primes. By the Well Ordering Principle,
there is a smallest such number say n. Then, either n is prime (a
contradiction) or n is composite and we write n = ab where
1 < a, b < n. By the minimality of n, both of a and b must be
able to be factored as a product of primes. This implies that
n = ab can be factored into a product of primes, contradicting the
definition of n. Hence every number can be factored into a product
of prime numbers.
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Fundamental Theorem of Arithmetic - Informal Uniqueness
Proof

Suppose that n can be factored in two distinct ways. Say
n = p1p2...pk = q1q2...qm. Since

p1 | p1p2...pk = q1q2...qm

by the Generalized Euclid’s Lemma (Generalized Primes and
Divisibility), we see that p1 | qj for some j . By reordering if
necessary, we may swap q1 and qj in the order so that p1 | q1.
Hence, we can divide by p1 to obtain

p2...pk = q2...qm.

Repeating this process shows that all the factors must match.
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