Carmen's Core Concepts (Math 135)

Carmen Bruni

University of Waterloo

Week 3

(1) Translating From Mathematics to English
(2) Contrapositive
(3) Example of Contrapositive
(4) Types of Implications
(5) Contradiction
(6) Example of Contradiction
(7) Uniqueness
(8) Example of Uniqueness
(9) Injections and Surjections
(10) Division Algorithm
(11) Summation and Product Notation
(12) Summation and Product Notation Examples

Translating From Mathematics to English

- Make sure you know what a question is asking before attempting it!
- Key words meaning for all: Always, Whenever, For Any, No/None.
- Key words meaning there exists: For Some, Has a, There is/is not.
(1) No multiple of 15 plus any multiple of 6 equals 100 .

$$
\forall m, n \in \mathbb{Z},(15 m+6 n \neq 100)
$$

(2) $n \in \mathbb{Z} \Rightarrow(\exists m \in \mathbb{Z}, m>n)$.

There is no greatest integer.

Contrapositive

- $H \Rightarrow C \equiv \neg C \Rightarrow \neg H$.

Proof:

$$
\begin{aligned}
H \Rightarrow C & \equiv \neg H \vee C \\
& \equiv C \vee \neg H \\
& \equiv \neg(\neg C) \vee \neg H \\
& \equiv \neg C \Rightarrow \neg H .
\end{aligned}
$$

- $7 \nmid n \Rightarrow 14 \nmid n \equiv 14|n \Rightarrow 7| n$.
- Useful when you have a non existence statement or if the conclusion is the negation of an easy to use statement.

Example of Contrapositive

Example: Suppose $a, b \in \mathbb{R}$ and $a b \in \mathbb{R}-\mathbb{Q}$ (the set of irrational numbers). Show either $a \in \mathbb{R}-\mathbb{Q}$ or $b \in \mathbb{R}-\mathbb{Q}$.

Proof: Proceed by the contrapositive. Suppose that a is rational and b is rational. Then $\exists k, \ell, m, n \in \mathbb{Z}$ such that $a=\frac{k}{\ell}$ and $b=\frac{m}{n}$ with $\ell, n \neq 0$. Then

$$
a b=\frac{k m}{\ell n} \in \mathbb{Q}
$$

as required.

Types of Implications

Let A, B, C be statements.
(1) $(A \wedge B) \Rightarrow C$. These we have seen in say Divisibility of Integer Combinations or Bounds by Divisibility.
(2) $A \Rightarrow(B \wedge C)$. For example:

Let S, T, U be sets. If $(S \cup T) \subseteq U$, then $S \subseteq U$ and $T \subseteq U$.
(3) $(A \vee B) \Rightarrow C$. For example $(x=1 \vee y=2) \Rightarrow x^{2} y+y-2 x^{2}+4 x-2 x y=2$
(9) $A \Rightarrow(B \vee C)$. (Elimination)

Example: If $x^{2}-7 x+12 \geq 0$ then $x \leq 3 \vee x \geq 4$.
Proof: Suppose $x^{2}-7 x+12 \geq 0$ and $x>3$. Then $0 \leq x^{2}-7 x+12=(x-3)(x-4)$. Now, $x-3>0$ and so we must have that $x-4 \geq 0$. Hence $x \geq 4$.

Contradiction

- Generalization of Proof by Contrapositive.
- Let S be a statement. Then $S \wedge \neg S$ is false.
- Use: Assume the hypothesis is true and assume towards a contradiction that the negation of the conclusion is also true. Break math (find a statement S such that $S \wedge \neg S$ is true) and conclude that the conclusion must be true.

Example of Contradiction

Prove that $\sqrt{2}$ is irrational.
Proof: Assume towards a contradiction that $\sqrt{2}=\frac{a}{b} \in \mathbb{Q}$ with $a, b \in \mathbb{N}$. Assume further that a and b share no common factor (otherwise simplify the fraction first). Then $2 b^{2}=a^{2}$. Hence a is even. Write $a=2 k$ for some integer k. Then $2 b^{2}=a^{2}=(2 k)^{2}=4 k^{2}$ and canceling a 2 shows that $b^{2}=2 k^{2}$. Thus b^{2} is even and hence b is even. This implies that a and b share a common factor, a contradiction.

Uniqueness

- To prove uniqueness, we can do one of the following:
(1) Assume $\exists x, y \in S$ such that $P(x) \wedge P(y)$ is true and show $x=y$.
(2) Argue by assuming that $\exists x, y \in S$ are distinct such that $P(x) \wedge P(y)$, then derive a contradiction.
- To prove uniqueness and existence, we also need to show that $\exists x \in S$ such that $P(x)$ is true.

Example of Uniqueness

Suppose $x \in \mathbb{R}-\mathbb{Z}$ and $m \in \mathbb{Z}$ such that $x<m<x+1$. Show that m is unique.

Proof: Assume that $\exists m, n \in \mathbb{Z}$ such that

$$
x<m<x+1 \quad \text { and } \quad x<n<x+1
$$

Look at the value $m-n$. This value is largest when m is largest and n is smallest. Since $m<x+1$ and $n>x$, we see that $m-n<1$. Further, for this to be minimal, we could flip the roles of m and n above to see that $-1<m-n$. Thus $-1<m-n<1$ and $m-n \in \mathbb{Z}$. Hence $m-n=0$, that is $m=n$.

Injections and Surjections

Let S and T be sets. A function

$$
\begin{aligned}
f: & S \rightarrow T \\
x & \mapsto f(x)
\end{aligned}
$$

is said to be
(1) Injective (or one to one or 1:1) if and only if

$$
\forall x, y \in S, f(x)=f(y) \Rightarrow x=y
$$

(2) Surjective (or onto) if and only if

$$
\forall y \in T \exists x \in S \text { such that } f(x)=y
$$

Division Algorithm

- Grade School Division.
- $51=7(7)+2$
- $35=6(5)+5$ and $-35=6(-5)-5=6(-5)-6+6-5=6(-6)+1$ where $a=-35, b=6, q=-6$, and $r=1$.
- (Division Algorithm) Let $a \in \mathbb{Z}$ and $b \in \mathbb{N}$. Then $\exists!q, r \in \mathbb{Z}$ such that $a=b q+r$ where $0 \leq r<b$.
- Check out the proof in the notes!

Summation and Product Notation

Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be a sequence of n real numbers. We write

$$
\sum_{i=1}^{n} a_{i}:=a_{1}+a_{2}+\ldots+a_{n}
$$

We call i the index variable, 1 is the starting number, n is the upper bound. We can also write

$$
\sum_{x \in S} x
$$

to mean the sum of elements in S. Similarly, we define

$$
\prod_{i=1}^{n} a_{i}:=a_{1} a_{2} \ldots a_{n} \quad \prod_{x \in S}:=\text { Product of elements in } S
$$

We make the following conventions when $j>k$ are integers

$$
\sum_{i=j}^{k} a_{i}=\sum_{x \in \emptyset}=0 \quad \text { and } \quad \prod_{i=j}^{k} a_{i}=\prod_{x \in \emptyset}=1
$$

Summation and Product Notation Examples

(1) $\sum_{i=1}^{4} i^{2}=(1)^{2}+(2)^{2}+(3)^{2}+(4)^{2}=1+4+9+16=30$
(2) $\prod_{i=1}^{4} i^{2}=(1)^{2}(2)^{2}(3)^{2}(4)^{2}=(1)(4)(9)(16)=576$
(3) $\sum_{i=1}^{3.5} i=1+2+3=6$
(9) For $k \in \mathbb{N}$ fixed, $\sum_{i=k}^{2 k} \frac{1}{i}=\frac{1}{k}+\frac{1}{k+1}+\ldots+\frac{1}{2 k}$.

