Carmen's Core Concepts (Math 135)

Carmen Bruni

University of Waterloo

Week 3

Carmen Bruni Carmen's Core Concepts (Math 135)

- Translating From Mathematics to English
- 2 Contrapositive
- 3 Example of Contrapositive
- Types of Implications
- 5 Contradiction
- 6 Example of Contradiction
- O Uniqueness
- 8 Example of Uniqueness
- Injections and Surjections
- 10 Division Algorithm
- 1 Summation and Product Notation
- 10 Summation and Product Notation Examples

Translating From Mathematics to English

- Make sure you know what a question is asking before attempting it!
- Key words meaning for all: Always, Whenever, For Any, No/None.
- Key words meaning there exists: For Some, Has a, There is/is not.
- No multiple of 15 plus any multiple of 6 equals 100.

$$\forall m, n \in \mathbb{Z}, (15m + 6n \neq 100)$$

$$one \mathbb{Z} \Rightarrow (\exists m \in \mathbb{Z}, m > n).$$

There is no greatest integer.

•
$$H \Rightarrow C \equiv \neg C \Rightarrow \neg H$$
.

Proof:

$$H \Rightarrow C \equiv \neg H \lor C$$
$$\equiv C \lor \neg H$$
$$\equiv \neg (\neg C) \lor \neg H$$
$$\equiv \neg C \Rightarrow \neg H.$$

- $7 \nmid n \Rightarrow 14 \nmid n \equiv 14 \mid n \Rightarrow 7 \mid n$.
- Useful when you have a non existence statement or if the conclusion is the negation of an easy to use statement.

Example: Suppose $a, b \in \mathbb{R}$ and $ab \in \mathbb{R} - \mathbb{Q}$ (the set of irrational numbers). Show either $a \in \mathbb{R} - \mathbb{Q}$ or $b \in \mathbb{R} - \mathbb{Q}$.

Proof: Proceed by the contrapositive. Suppose that *a* is rational and *b* is rational. Then $\exists k, \ell, m, n \in \mathbb{Z}$ such that $a = \frac{k}{\ell}$ and $b = \frac{m}{n}$ with $\ell, n \neq 0$. Then

$$ab = \frac{km}{\ell n} \in \mathbb{Q}$$

as required.

Types of Implications

Let A, B, C be statements.

- (A ∧ B) ⇒ C. These we have seen in say Divisibility of Integer Combinations or Bounds by Divisibility.
- **2** $A \Rightarrow (B \land C)$. For example: Let S, T, U be sets. If $(S \cup T) \subseteq U$, then $S \subseteq U$ and $T \subseteq U$.

3
$$(A \lor B) \Rightarrow C$$
. For example
 $(x = 1 \lor y = 2) \Rightarrow x^2y + y - 2x^2 + 4x - 2xy = 2$

•
$$A \Rightarrow (B \lor C)$$
. (Elimination)

Example: If $x^2 - 7x + 12 \ge 0$ then $x \le 3 \lor x \ge 4$.

Proof: Suppose $x^2 - 7x + 12 \ge 0$ and x > 3. Then $0 \le x^2 - 7x + 12 = (x - 3)(x - 4)$. Now, x - 3 > 0 and so we must have that $x - 4 \ge 0$. Hence $x \ge 4$.

- Generalization of Proof by Contrapositive.
- Let S be a statement. Then $S \land \neg S$ is false.
- Use: Assume the hypothesis is true and assume towards a contradiction that the negation of the conclusion is also true. Break math (find a statement S such that $S \land \neg S$ is true) and conclude that the conclusion must be true.

Prove that $\sqrt{2}$ is irrational.

Proof: Assume towards a contradiction that $\sqrt{2} = \frac{a}{b} \in \mathbb{Q}$ with $a, b \in \mathbb{N}$. Assume further that a and b share no common factor (otherwise simplify the fraction first). Then $2b^2 = a^2$. Hence a is even. Write a = 2k for some integer k. Then $2b^2 = a^2 = (2k)^2 = 4k^2$ and canceling a 2 shows that $b^2 = 2k^2$. Thus b^2 is even and hence b is even. This implies that a and b share a common factor, a contradiction.

- To prove uniqueness, we can do one of the following:
 - Assume $\exists x, y \in S$ such that $P(x) \land P(y)$ is true and show x = y.
 - Argue by assuming that ∃x, y ∈ S are distinct such that P(x) ∧ P(y), then derive a contradiction.
- To prove uniqueness and existence, we also need to show that $\exists x \in S$ such that P(x) is true.

Suppose $x \in \mathbb{R} - \mathbb{Z}$ and $m \in \mathbb{Z}$ such that x < m < x + 1. Show that *m* is unique.

Proof: Assume that $\exists m, n \in \mathbb{Z}$ such that

x < m < x + 1 and x < n < x + 1

Look at the value m - n. This value is largest when m is largest and n is smallest. Since m < x + 1 and n > x, we see that m - n < 1. Further, for this to be minimal, we could flip the roles of m and n above to see that -1 < m - n. Thus -1 < m - n < 1and $m - n \in \mathbb{Z}$. Hence m - n = 0, that is m = n.

Injections and Surjections

Let S and T be sets. A function

$$f: S o T$$

 $x \mapsto f(x)$

is said to be

Injective (or one to one or 1 : 1) if and only if

$$\forall x, y \in S, f(x) = f(y) \Rightarrow x = y.$$

Surjective (or onto) if and only if

$$\forall y \in T \; \exists x \in S \; ext{such that} \; f(x) = y$$

- Grade School Division.
- 51 = 7(7) + 2

•
$$35 = 6(5) + 5$$
 and
 $-35 = 6(-5) - 5 = 6(-5) - 6 + 6 - 5 = 6(-6) + 1$ where
 $a = -35$, $b = 6$, $q = -6$, and $r = 1$.

- (Division Algorithm) Let $a \in \mathbb{Z}$ and $b \in \mathbb{N}$. Then $\exists !q, r \in \mathbb{Z}$ such that a = bq + r where $0 \leq r < b$.
- Check out the proof in the notes!

Summation and Product Notation

Let $\{a_1, ..., a_n\}$ be a sequence of *n* real numbers. We write

$$\sum_{i=1}^{n} a_i := a_1 + a_2 + \ldots + a_n.$$

We call i the index variable, 1 is the starting number, n is the upper bound. We can also write

to mean the sum of elements in S. Similarly, we define

$$\prod_{i=1}^{n} a_i := a_1 a_2 \dots a_n \qquad \prod_{x \in S} := \text{ Product of elements in S}$$

We make the following conventions when j > k are integers

$$\sum_{i=j}^{k} a_i = \sum_{x \in \emptyset} = 0 \quad \text{and} \quad \prod_{i=j}^{k} a_i = \prod_{x \in \emptyset} = 1$$

Summation and Product Notation Examples

a)
$$\sum_{i=1}^{4} i^{2} = (1)^{2} + (2)^{2} + (3)^{2} + (4)^{2} = 1 + 4 + 9 + 16 = 30$$

a)
$$\prod_{i=1}^{4} i^{2} = (1)^{2} (2)^{2} (3)^{2} (4)^{2} = (1)(4)(9)(16) = 576$$

b)
$$\sum_{i=1}^{3.5} i = 1 + 2 + 3 = 6$$

b) For $k \in \mathbb{N}$ fixed,
$$\sum_{i=k}^{2k} \frac{1}{i} = \frac{1}{k} + \frac{1}{k+1} + \dots + \frac{1}{2k}.$$