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Translating From Mathematics to English

Make sure you know what a question is asking before
attempting it!

Key words meaning for all: Always, Whenever, For Any,
No/None.

Key words meaning there exists: For Some, Has a, There is/is
not.

1 No multiple of 15 plus any multiple of 6 equals 100.

∀m, n ∈ Z, (15m + 6n 6= 100)

2 n ∈ Z⇒ (∃m ∈ Z,m > n).

There is no greatest integer.
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Contrapositive

H ⇒ C ≡ ¬C ⇒ ¬H.

Proof:

H ⇒ C ≡ ¬H ∨ C

≡ C ∨ ¬H
≡ ¬(¬C ) ∨ ¬H
≡ ¬C ⇒ ¬H.

7 - n⇒ 14 - n ≡ 14 | n⇒ 7 | n.

Useful when you have a non existence statement or if the
conclusion is the negation of an easy to use statement.
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Example of Contrapositive

Example: Suppose a, b ∈ R and ab ∈ R−Q (the set of irrational
numbers). Show either a ∈ R−Q or b ∈ R−Q.

Proof: Proceed by the contrapositive. Suppose that a is rational
and b is rational. Then ∃k, `,m, n ∈ Z such that a = k

` and b = m
n

with `, n 6= 0. Then
ab = km

`n ∈ Q

as required. �
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Types of Implications

Let A,B,C be statements.

1 (A ∧ B)⇒ C . These we have seen in say Divisibility of
Integer Combinations or Bounds by Divisibility.

2 A⇒ (B ∧ C ). For example:

Let S ,T ,U be sets. If (S ∪ T ) ⊆ U, then S ⊆ U and T ⊆ U.

3 (A ∨ B)⇒ C . For example
(x = 1 ∨ y = 2)⇒ x2y + y − 2x2 + 4x − 2xy = 2

4 A⇒ (B ∨ C ). (Elimination)

Example: If x2 − 7x + 12 ≥ 0 then x ≤ 3 ∨ x ≥ 4.

Proof: Suppose x2 − 7x + 12 ≥ 0 and x > 3. Then
0 ≤ x2 − 7x + 12 = (x − 3)(x − 4). Now, x − 3 > 0 and so
we must have that x − 4 ≥ 0. Hence x ≥ 4.
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Contradiction

Generalization of Proof by Contrapositive.

Let S be a statement. Then S ∧ ¬S is false.

Use: Assume the hypothesis is true and assume towards a
contradiction that the negation of the conclusion is also true.
Break math (find a statement S such that S ∧¬S is true) and
conclude that the conclusion must be true.

Carmen Bruni Carmen’s Core Concepts (Math 135)



Example of Contradiction

Prove that
√

2 is irrational.

Proof: Assume towards a contradiction that
√

2 = a
b ∈ Q with

a, b ∈ N. Assume further that a and b share no common factor
(otherwise simplify the fraction first). Then 2b2 = a2. Hence a is
even. Write a = 2k for some integer k . Then
2b2 = a2 = (2k)2 = 4k2 and canceling a 2 shows that b2 = 2k2.
Thus b2 is even and hence b is even. This implies that a and b
share a common factor, a contradiction.
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Uniqueness

To prove uniqueness, we can do one of the following:
1 Assume ∃x , y ∈ S such that P(x) ∧ P(y) is true and show

x = y .
2 Argue by assuming that ∃x , y ∈ S are distinct such that

P(x) ∧ P(y), then derive a contradiction.

To prove uniqueness and existence, we also need to show that
∃x ∈ S such that P(x) is true.
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Example of Uniqueness

Suppose x ∈ R− Z and m ∈ Z such that x < m < x + 1. Show
that m is unique.

Proof: Assume that ∃m, n ∈ Z such that

x < m < x + 1 and x < n < x + 1

Look at the value m − n. This value is largest when m is largest
and n is smallest. Since m < x + 1 and n > x , we see that
m − n < 1. Further, for this to be minimal, we could flip the roles
of m and n above to see that −1 < m − n. Thus −1 < m − n < 1
and m − n ∈ Z. Hence m − n = 0, that is m = n.
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Injections and Surjections

Let S and T be sets. A function

f : S → T

x 7→ f (x)

is said to be

1 Injective (or one to one or 1 : 1) if and only if

∀x , y ∈ S , f (x) = f (y)⇒ x = y .

2 Surjective (or onto) if and only if

∀y ∈ T ∃x ∈ S such that f (x) = y
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Division Algorithm

Grade School Division.

51 = 7(7) + 2

35 = 6(5) + 5 and
−35 = 6(−5)− 5 = 6(−5)− 6 + 6− 5 = 6(−6) + 1 where
a = −35, b = 6, q = −6, and r = 1.

(Division Algorithm) Let a ∈ Z and b ∈ N. Then ∃!q, r ∈ Z
such that a = bq + r where 0 ≤ r < b.

Check out the proof in the notes!
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Summation and Product Notation

Let {a1, ..., an} be a sequence of n real numbers. We write
n∑

i=1

ai := a1 + a2 + ... + an.

We call i the index variable, 1 is the starting number, n is the
upper bound. We can also write∑

x∈S
x

to mean the sum of elements in S . Similarly, we define
n∏

i=1

ai := a1a2...an
∏
x∈S

:= Product of elements in S

We make the following conventions when j > k are integers

k∑
i=j

ai =
∑
x∈∅

= 0 and
k∏
i=j

ai =
∏
x∈∅

= 1
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Summation and Product Notation Examples

1

4∑
i=1

i2 = (1)2 + (2)2 + (3)2 + (4)2 = 1 + 4 + 9 + 16 = 30

2

4∏
i=1

i2 = (1)2(2)2(3)2(4)2 = (1)(4)(9)(16) = 576

3

3.5∑
i=1

i = 1 + 2 + 3 = 6

4 For k ∈ N fixed,
2k∑
i=k

1

i
=

1

k
+

1

k + 1
+ ... +

1

2k
.
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