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Divisibility Theorems

Let a, b, c ∈ Z.

1 Bounds by Divisibility (BBD): (a | b ∧ b 6= 0)⇒ |a| ≤ |b|
2 Transitivity of Divisibility (TD): (a | b ∧ b | c)⇒ a | c
3 Divisibility of Integer Combinations (DIC):

(a | b ∧ a | c)⇒ ∀x , y ∈ Z a | bx + cy

Proof of DIC: Assume that a | b and a | c . Then there exist
integers m and n such that am = b and an = c . Then for any x
and y integers,

bx + cy = amx + any = a(mx + ny)

and hence a | bx + cy .
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DIC Example

If 5 | a + 2b and 5 | 2a + b, then 5 | (a + 2b)(2) + (2a + b)(−1)
and simplifying shows that 5 | 3b.
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Converses

Definition: Let A,B be statements. The converse of A⇒ B is
B ⇒ A.

Example The converse of Bounds by Divisibility (BBD) is

|a| ≤ |b| ⇒ a | b ∧ b 6= 0
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If and only if

If and only if A⇔ B, A iff B, A if and only if B.

A B A⇔ B

T T T
T F F
F T F
F F T

Exercise: Show that A⇔ B ≡ (A⇒ B) ∧ (B ⇒ A)
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Sets

A set is a collection of elements.

1 N = {1, 2, ...}
2 Q = {a/b ∈ R : a ∈ Z ∧ b ∈ Z ∧ b 6= 0}
3 {}, ∅, {∅}
4 x ∈ S and x /∈ S (Important for proofs with sets)
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Other Set Examples

1 Set of even numbers between 5 and 14 (inclusive).

{6, 8, 10, 12, 14} or {n ∈ N : 5 ≤ n ≤ 14 ∧ 2 | n}
2 All odd perfect squares.

{(2k + 1)2 : k ∈ Z} (or N overlap doesn’t matter!)
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Set Operations

Let S and T be sets. Define

1 #S or |S |. Size of the set S .

2 S ∪ T = {x : x ∈ S ∨ x ∈ T} (Union)

3 S ∩ T = {x : x ∈ S ∧ x ∈ T} (Intersection)

4 S − T = {x ∈ S : x /∈ T} (Set difference)

5 S̄ or Sc (with respect to universe U) the complement of S ,
that is

Sc = {x ∈ U : x /∈ S} = U − S

6 S × T = {(x , y) : x ∈ S ∧ y ∈ T} (Cartesian Product)
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More Set Terminology

Let S and T be sets. Then

1 S ⊆ T : S is a subset of T . Every element of S is an element
of T .

2 S ( T : S is a proper/strict subset of T . Every element of S
is an element of T and some element of T is not in S .

3 S ⊇ T : S contains T . Every element of T is an element of S .

4 S ) T : S properly/strictly contains T . Every element of T is
an element of S and some element of S is not in T .

5 S = T means S ⊆ T and T ⊆ S .
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Sets and If and Only If

Show S = T if and only if S ∩ T = S ∪ T .

Proof:

Suppose S = T . To show S ∩ T = S ∪ T we need to show
that S ∩ T ⊆ S ∪ T and that S ∩ T ⊇ S ∪ T .
First suppose that x ∈ S ∩ T . Then x ∈ S and x ∈ T . Hence
x ∈ S ∪ T .
Next, suppose that x ∈ S ∪ T . Then x ∈ S or x ∈ T . Since
S = T we have in either case that x ∈ S and x ∈ T . Thus
x ∈ S ∩ T . This shows that S ∩ T = S ∪ T and completes
the forward direction.
Now assume that S ∩ T = S ∪ T . We want to show that
S = T which we do by showing that S ⊆ T and T ⊆ S .
First, suppose that x ∈ S . Then x ∈ S ∪ T = S ∩ T . Hence
x ∈ T .
Next, suppose that x ∈ T . Then x ∈ S ∪ T = S ∩ T . Hence
x ∈ S . Therefore, S = T .
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Quantified Statements

1 ∀ For all

2 ∃ There exists

Prove ∀n ∈ N, 2n2 + 11n + 15 is composite.

Proof: Let n be an arbitrary natural number. Then factoring gives
2n2 + 11n + 15 = (2n + 5)(n + 3). Since 2n + 5 > 1 and
n + 3 > 1, we have 2n2 + 11n + 15 is composite.

Prove ∃k ∈ Z such that 6 = 3k.

Proof: Since 3 · 2 = 6, we see that k = 2 satisfies the given
statement.
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Assuming a For All Statement

Let a, b, c ∈ Z. If ∀x ∈ Z, a | (bx + c) then a | (b + c).

Proof: Assume ∀x ∈ Z, a | (bx + c). Then, for example, when
x = 1, we see that a | (b(1) + c). Thus a | (b + c).
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Domain Is Important!

Let P(x) be the statement x2 = 2 and let

S = {
√

2,−
√

2}.
Which of the following are true?

1 ∃x ∈ Z,P(x)
2 ∀x ∈ Z,P(x)
3 ∃x ∈ R,P(x)
4 ∀x ∈ R,P(x)
5 ∃x ∈ S ,P(x)
6 ∀x ∈ S ,P(x)

Solution:
1 False
2 False
3 True
4 False
5 True
6 True
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Approaching Quantified Statement Problems

1 A single counter example shows (∀x ∈ S ,P(x)) is false.

Claim: Every positive even integer is composite.

This claim is false since 2 is even but 2 is prime.
2 A single example does not prove that (∀x ∈ S ,P(x)) is true.

Claim: Every even integer at least 4 is composite.

This is true but we cannot prove it by saying ”6 is an even
integer and is composite.” We must show this is true for an
arbitrary even integer x . (Idea: 2 | x so there exists a k ∈ N
such that 2k = x and k 6= 1.)

3 A single example does show that (∃x ∈ S ,P(x)) is true.

Claim: Some even integer is prime.

This claim is true since 2 is even and 2 is prime.
4 What about showing that (∃x ∈ S ,P(x)) is false?

Idea: (∃x ∈ S ,P(x)) is false ≡ ∀x ∈ S ,¬P(x) is true. This
idea is central for proof by contradiction which we will see
later.
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Negating Quantifiers

1 Everybody in this room was born before 2010.

Solution: Somebody in this room was not born before 2010.

2 Someone in this room was born before 1990

Solution: Everyone in this room was born after 1990.

3 ∀x ∈ R, |x | < 5

Solution: ¬(∀x ∈ R, |x | < 5) ≡ ∃x ∈ R, |x | ≥ 5

4 ∃x ∈ R, |x | ≤ 5

Solution: ¬(∃x ∈ R, |x | ≤ 5) ≡ ∀x ∈ R, |x | > 5
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Nesting Quantifiers

Order Matters!
1 ∀x ∈ R,∀y ∈ R, x3 − y3 = 1
2 ∃x ∈ R,∃y ∈ R, x3 − y3 = 1
3 ∀x ∈ R,∃y ∈ R, x3 − y3 = 1
4 ∃x ∈ R,∀y ∈ R, x3 − y3 = 1

1 False (Choose x = y = 0)
2 True (Choose x = 1 and y = 0)
3 True. Proof: Let x ∈ R be arbitrary. then choose

y = 3
√
x3 − 1. Then

x3 − y3 = x3 − (
3
√
x3 − 1)3 = x3 − (x3 − 1) = 1

4 False. Idea: Negate and show the negation is true!

¬(∃x ∈ R, ∀y ∈ R, x3−y3 = 1) ≡ ∀x ∈ R, ∃y ∈ R, x3−y3 6= 1

Proof: Let x ∈ R be arbitrary. Take y = x . Then
x3 − y3 = x3 − x3 = 0 6= 1.
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