Carmen's Core Concepts (Math 135)

Carmen Bruni

University of Waterloo

Week 12
(1) Real Quadratic Factors (RQF)
(2) Show $g(x)=x^{2}-2 \Re(c) x+|c|^{2}$ is a factor of $f(x)$.
(3) Real Factors of Real Polynomials (RFPF)
(4) An Example
(5) Square Roots of Complex Numbers

Real Quadratic Factors (RQF)

Theorem: Let $f(x) \in \mathbb{R}[x]$. If $c \in \mathbb{C}-\mathbb{R}$ and $f(c)=0$, then there exists a $g(x) \in \mathbb{R}[x]$ such that $g(x)$ is a real quadratic factor of $f(x)$.

Real Quadratic Factors (RQF)

Theorem: Let $f(x) \in \mathbb{R}[x]$. If $c \in \mathbb{C}-\mathbb{R}$ and $f(c)=0$, then there exists a $g(x) \in \mathbb{R}[x]$ such that $g(x)$ is a real quadratic factor of $f(x)$.

Proof: Take

$$
\begin{aligned}
g(x) & =(x-c)(x-\bar{c}) \\
& =x^{2}-(c+\bar{c}) x+c \bar{c} \\
& =x^{2}-2 \Re(c) x+|c|^{2} \in \mathbb{R}[x]
\end{aligned}
$$

It suffices to show that $g(x)$ is a factor of $f(x)$.

Show $g(x)=x^{2}-2 \Re(c) x+|c|^{2}$ is a factor of $f(x)$.

By the Division Algorithm for Polynomials, there exists a unique $q(x)$ and $r(x)$ in $\mathbb{R}[x]$ such that

$$
f(x)=g(x) q(x)+r(x)
$$

with $r(x)=0$ or $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))=2$. Assume towards a contradiction that $r(x) \neq 0$. Then $\operatorname{deg}(r(x))=0$ or 1 , that is, $r(x)$ is linear or constant. Substituting $x=c$ into the above gives

$$
0=f(c)=g(c) q(c)+r(c)=r(c)
$$

and hence $r(c)=0$. Now, if $r(x)$ was constant, then $r(x)=0$ which is a contradiction. If $r(x)$ was linear, say $r(x)=a x+b$, then

$$
r(c)=a c+b=0 \quad \Longrightarrow \quad c=\frac{-b}{a} \in \mathbb{R}
$$

and this too is a contradiction. Therefore, $r(x)=0$ and $g(x) \mid f(x)$.

Real Factors of Real Polynomials (RFRP)

Theorem: Let $f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0} \in \mathbb{R}[x]$. Then $f(x)$ can be written as a product of real linear and real quadratic factors,

Real Factors of Real Polynomials (RFRP)

Theorem: Let $f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0} \in \mathbb{R}[x]$. Then $f(x)$ can be written as a product of real linear and real quadratic factors,

Proof: By CPN, $f(x)$ has n roots over \mathbb{C}. Let $r_{1}, r_{2}, \ldots, r_{k}$ be the real roots and let $c_{1}, c_{2}, \ldots, c_{\ell}$ be the strictly complex roots. By CJRT, complex roots come in pairs, say $c_{2}=\overline{c_{1}}, c_{4}=\overline{c_{3}}, \ldots$, $c_{\ell}=\overline{c_{\ell-1}}$ (hence also ℓ is even). For each pair, by RQF, we have an associated quadratic factor, say $q_{1}(x), q_{2}(x), \ldots, q_{\ell / 2}(x)$. By the Factor Theorem, each real root corresponds to a linear factor, say $g_{1}(x), \ldots, g_{k}(x)$. Hence

$$
f(x)=c g_{1}(x) \ldots g_{k}(x) q_{1}(x) \ldots q_{\ell / 2}(x)
$$

where c is the coefficient of the leading term completing the proof.

An Example

Prove that a real polynomial of odd degree has a real root.

An Example

Prove that a real polynomial of odd degree has a real root. Solution: Assume towards a contradiction that $p(x)$ is a real polynomial of odd degree without a root. By the Factor Theorem, we know that if $p(x)$ cannot have a real linear factor. By Real Factors of Real Polynomials, we see that

$$
p(x)=q_{1}(x) \ldots q_{k}(x)
$$

for some quadratic factors $q_{i}(x)$. Now, taking degrees shows that

$$
\operatorname{deg}(p(x))=2 k
$$

contradicting the fact that the degree was of $p(x)$ is odd. Hence, the polynomial must have a real root.

Square Roots of Complex Numbers

Find $\sqrt{5+2 i}$.

Square Roots of Complex Numbers

Find $\sqrt{5+2 i}$.
Solution: We are seeking values z such that $z^{2}=5+2 i$. We can either write $5+2 i$ in polar form and solve or we can write $z=x+i y$ and solve this way. Using the first method yields $5+2 i=\sqrt{29} e^{i \theta}$ where $\theta=\arctan (2 / 5)$. Hence, $\sqrt[4]{29} e^{i \theta / 2}$ and $\sqrt[4]{29} e^{i \theta / 2+i \pi}$ are solutions. Simplifying gives $\pm \sqrt[4]{29} e^{i \theta / 2}$. (You could convert back to standard form if you wanted but it will not be a nice answer.)

