Carmen's Core Concepts (Math 135)

Carmen Bruni

University of Waterloo

Week 11 Part 2

(1) Definition of Irreducible
(2) The Field Matters
(3) Using Long Division

4 Multiplicity of Roots
(5) Techniques for Finding Roots
(6) A Rational Roots Example
(7) A Rational Roots Example Pt. 2
(8) A Conjugate Roots Example
(9) Rationality of Numbers

Definition of Irreducible

Let \mathbb{F} be a field. We say a polynomial of positive degree in $\mathbb{F}[x]$ is reducible in $\mathbb{F}[x]$ when it can be written as the product of two polynomials in $\mathbb{F}[x]$ of positive degree. Otherwise, we say that the polynomial is irreducible in $\mathbb{F}[x]$. For example, $x^{2}+1$ is irreducible in $\mathbb{R}[x]$ but reducible in $\mathbb{C}[x]$.

The Field Matters

The factorization depends on the field! For example, factoring $z^{5}-z^{4}-z^{3}+z^{2}-2 z+2 \ldots$
(1) ... over $\mathbb{C},(z-i)(z+i)(z-\sqrt{2})(z+\sqrt{2})(z-1)$
(2) ... over $\mathbb{R},\left(z^{2}+1\right)(z-\sqrt{2})(z+\sqrt{2})(z-1)$
(3) ... over $\mathbb{Q},\left(z^{2}+1\right)\left(z^{2}-2\right)(z-1)$

Using Long Division

Example: Factor $f(x)=x^{4}-2 x^{3}+3 x^{2}-4 x+2$ over \mathbb{Z}_{7}.

Using Long Division

Example: Factor $f(x)=x^{4}-2 x^{3}+3 x^{2}-4 x+2$ over \mathbb{Z}_{7}.
Proof: Note that $f(1)=0$ and thus, by the Factor Theorem, $x-1$ is a factor. By long division, we have that

$$
f(x)=(x-1)\left(x^{3}-x^{2}+2 x-2\right)
$$

Now, the sum of the coefficients of the cubic is still 0 hence $x-1$ is another factor of $f(x)$! By a second application of long division, we see that

$$
f(x)=(x-1)^{2}\left(x^{2}+2\right)
$$

Now, the Factor Theorem says that if $x^{2}+2$ could be factored, it must have a root since the factors must be linear. Checking the 7 possible roots, the corresponding polynomial values when $x \in\{0,1,2,3,4,5,6\}$ are $x^{2}+2 \in\{2,3,6,4,4,6,3\}$ modulo 7 . Therefore, $x^{2}+2$ has no root in \mathbb{Z}_{7} and the above form was completely factorized.

Multiplicity of Roots

Definition: The multiplicity of a root $c \in \mathbb{F}$ of $f(x) \in \mathbb{F}[x]$ is the largest $k \in \mathbb{N}$ such that $(x-c)^{k}$ is a factor of $f(x)$.

Example: The multiplicity of the root 1 in the last example is 2 .

Techniques for Finding Roots

- Using the Rational Roots Theorem to guess a rational root.
- Trial and error (guessing roots)
- Using the Conjugate Roots Theorem
- Factoring and grouping
- Long division
- Quadratic formula

A Rational Roots Example

Factor $x^{3}-\frac{32}{15} x^{2}+\frac{1}{5} x+\frac{2}{15}$ as a product of irreducible polynomials over \mathbb{R}.

A Rational Roots Example

Factor $x^{3}-\frac{32}{15} x^{2}+\frac{1}{5} x+\frac{2}{15}$ as a product of irreducible polynomials over \mathbb{R}.
Solution: The above polynomial is equal to

$$
\frac{1}{15}\left(15 x^{3}-32 x^{2}+3 x+2\right)=f(x)
$$

By the Rational Roots Theorem, possible roots are

$$
\pm 1, \pm \frac{1}{3}, \pm \frac{1}{5}, \pm \frac{1}{15}, \pm 2, \pm \frac{2}{3}, \pm \frac{2}{5}, \pm \frac{2}{15},
$$

Note that $x=2$ is a root. Hence by the Factor Theorem, $x-2$ is a factor. By long division...

A Rational Roots Example Pt. 2

Factor $x^{3}-\frac{32}{15} x^{2}+\frac{1}{5} x+\frac{2}{15}$ as a product of irreducible polynomials over \mathbb{R}.
By long division...

we have that
$f(x)=\frac{1}{15}(x-2)\left(15 x^{2}-2 x-1\right)=\frac{1}{15}(x-2)(5 x+1)(3 x-1)$
completing the question.

A Conjugate Roots Example

Factor $f(z)=z^{4}-5 z^{3}+16 z^{2}-9 z-13$ over \mathbb{C} into a product of irreducible polynomials given that $2-3 i$ is a root.

A Conjugate Roots Example

Factor $f(z)=z^{4}-5 z^{3}+16 z^{2}-9 z-13$ over \mathbb{C} into a product of irreducible polynomials given that $2-3 i$ is a root.
Solution: Factors are (using the Factor Theorem and CJRT)

$$
(z-(2-3 i))(z-(2+3 i))=z^{2}-4 z+13
$$

After long division,

$$
f(z)=\left(z^{2}-4 z+13\right)\left(z^{2}-z-1\right)
$$

By the quadratic formula on the last quadratic,

$$
z=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-1)}}{2(1)}=\frac{1 \pm \sqrt{5}}{2}
$$

Hence,
$f(z)=(z-(2-3 i))(z-(2+3 i))(z-(1+\sqrt{5}) / 2)(z-(1-\sqrt{5}) / 2)$.

Rationality of Numbers

Prove that $\sqrt{5}+\sqrt{3}$ is irrational.

Rationality of Numbers

Prove that $\sqrt{5}+\sqrt{3}$ is irrational.
Solution: Assume towards a contradiction that
$\sqrt{5}+\sqrt{3}=x \in \mathbb{Q}$. Squaring gives

$$
5+2 \sqrt{15}+3=x^{2} \quad \Longrightarrow \quad 2 \sqrt{15}=x^{2}-8
$$

Squaring again gives

$$
60=x^{4}-16 x^{2}+64 \quad \Longrightarrow \quad 0=x^{4}-16 x^{2}+4 x
$$

By the Rational Roots Theorem, the only possible roots are

$$
\pm 1, \pm 2, \pm 4
$$

A quick check shows that none of these work.

