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Definition of Irreducible

Let F be a field. We say a polynomial of positive degree in F[x ] is
reducible in F[x ] when it can be written as the product of two
polynomials in F[x ] of positive degree. Otherwise, we say that the
polynomial is irreducible in F[x ]. For example, x2 + 1 is irreducible
in R[x ] but reducible in C[x ].
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The Field Matters

The factorization depends on the field! For example, factoring
z5 − z4 − z3 + z2 − 2z + 2...

1 ... over C, (z − i)(z + i)(z −
√

2)(z +
√

2)(z − 1)

2 ... over R, (z2 + 1)(z −
√

2)(z +
√

2)(z − 1)

3 ... over Q, (z2 + 1)(z2 − 2)(z − 1)
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Using Long Division

Example: Factor f (x) = x4 − 2x3 + 3x2 − 4x + 2 over Z7.

Proof: Note that f (1) = 0 and thus, by the Factor Theorem,
x − 1 is a factor. By long division, we have that

f (x) = (x − 1)(x3 − x2 + 2x − 2)

Now, the sum of the coefficients of the cubic is still 0 hence x − 1
is another factor of f (x)! By a second application of long division,
we see that

f (x) = (x − 1)2(x2 + 2)

Now, the Factor Theorem says that if x2 + 2 could be factored, it
must have a root since the factors must be linear. Checking the 7
possible roots, the corresponding polynomial values when
x ∈ {0, 1, 2, 3, 4, 5, 6} are x2 + 2 ∈ {2, 3, 6, 4, 4, 6, 3} modulo 7.
Therefore, x2 + 2 has no root in Z7 and the above form was
completely factorized. �
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Multiplicity of Roots

Definition: The multiplicity of a root c ∈ F of f (x) ∈ F[x ] is the
largest k ∈ N such that (x − c)k is a factor of f (x).

Example: The multiplicity of the root 1 in the last example is 2.
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Techniques for Finding Roots

Using the Rational Roots Theorem to guess a rational root.

Trial and error (guessing roots)

Using the Conjugate Roots Theorem

Factoring and grouping

Long division

Quadratic formula
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A Rational Roots Example

Factor x3 − 32
15x

2 + 1
5x + 2

15 as a product of irreducible polynomials
over R.

Solution: The above polynomial is equal to

1
15(15x3 − 32x2 + 3x + 2) = f (x)

By the Rational Roots Theorem, possible roots are

±1,±1
3 ,±

1
5 ,±

1
15 ,±2,±2

3 ,±
2
5 ,±

2
15 ,

Note that x = 2 is a root. Hence by the Factor Theorem, x − 2 is
a factor. By long division...
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A Rational Roots Example Pt. 2

Factor x3 − 32
15x

2 + 1
5x + 2

15 as a product of irreducible polynomials
over R.

By long division...

we have that
f (x) = 1

15(x − 2)(15x2 − 2x − 1) = 1
15(x − 2)(5x + 1)(3x − 1)

completing the question.
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A Conjugate Roots Example

Factor f (z) = z4 − 5z3 + 16z2 − 9z − 13 over C into a product of
irreducible polynomials given that 2− 3i is a root.

Solution: Factors are (using the Factor Theorem and CJRT)

(z − (2− 3i))(z − (2 + 3i)) = z2 − 4z + 13

After long division,

f (z) = (z2 − 4z + 13)(z2 − z − 1)

By the quadratic formula on the last quadratic,

z =
−(−1)±

√
(−1)2 − 4(1)(−1)

2(1)
=

1±
√

5

2

Hence,
f (z) = (z−(2−3i))(z−(2+3i))(z−(1+

√
5)/2)(z−(1−

√
5)/2).
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Rationality of Numbers

Prove that
√

5 +
√

3 is irrational.

Solution: Assume towards a contradiction that√
5 +
√

3 = x ∈ Q. Squaring gives

5 + 2
√

15 + 3 = x2 =⇒ 2
√

15 = x2 − 8

Squaring again gives

60 = x4 − 16x2 + 64 =⇒ 0 = x4 − 16x2 + 4x

By the Rational Roots Theorem, the only possible roots are

±1,±2,±4

A quick check shows that none of these work.
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