Carmen's Core Concepts (Math 135)

Carmen Bruni

University of Waterloo

Week 11 Part 1

(1) Polynomial Statements
(2) Remainder Theorem (RT)
(3) Factor Theorem (FT)
(4) Roots Over a Field
(5) Fundamental Theorem of Algebra (FTA)
(6) Complex Polynomials of Degree n Have n Roots (CPN)
(7) CPN Proof
(8) Rational Roots Theorem (RRT)
(9) Conjugate Roots Theorem (CJRT)

Polynomial Statements

Let $f(x)$ and $g(x)$ be nonzero polynomials over a field \mathbb{F} such that they are not additive inverses. Then

- $\operatorname{deg}(f(x)+g(x)) \leq \max \{\operatorname{deg}(f(x)), \operatorname{deg}(g(x))\}$
- $\operatorname{deg}(f(x) g(x))=\operatorname{deg}(f(x))+\operatorname{deg}(g(x))$
- If $f(x) \mid g(x)$ and $g(x) \mid f(x)$, then $f(x)=c g(x)$ for some $c \in \mathbb{F}$

Remainder Theorem (RT)

Theorem: (Remainder Theorem (RT)) Suppose that $f(x) \in \mathbb{F}[x]$ and that $c \in \mathbb{F}$. Then, the remainder when $f(x)$ is divided by $x-c$ is $f(c)$.

Remainder Theorem (RT)

Theorem: (Remainder Theorem (RT)) Suppose that $f(x) \in \mathbb{F}[x]$ and that $c \in \mathbb{F}$. Then, the remainder when $f(x)$ is divided by $x-c$ is $f(c)$.

Proof: By the Division Algorithm for Polynomials, there exists unique $q(x)$ and $r(x)$ in $\mathbb{F}[x]$ such that

$$
f(x)=(x-c) q(x)+r(x)
$$

with $r(x)=0$ or $\operatorname{deg}(r(x))<\operatorname{deg}(x-c)=1$. Therefore, $\operatorname{deg}(r(x))=0$. In either case, $r(x)=k$ for some $k \in \mathbb{F}$. Plug in $x=c$ into the above equation to see that $f(c)=r(c)=k$. Hence $r(x)=f(c)$.

Factor Theorem (FT)

Theorem: (Factor Theorem (FT)) Suppose that $f(x) \in \mathbb{F}[x]$ and $c \in \mathbb{F}$. Then the polynomial $x-c$ is a factor of $f(x)$ if and only if $f(c)=0$, that is, c is a root of $f(x)$.

Factor Theorem (FT)

Theorem: (Factor Theorem (FT)) Suppose that $f(x) \in \mathbb{F}[x]$ and $c \in \mathbb{F}$. Then the polynomial $x-c$ is a factor of $f(x)$ if and only if $f(c)=0$, that is, c is a root of $f(x)$.

Proof: Note that $x-c$ is a factor of $f(x)$ if and only if $r(x)=0$ via the Division Algorithm for Polynomials (DAP) which holds if and only if $r(x)=f(c)=0$ via the Remainder Theorem (RT).

Roots Over a Field

Proposition: Prove that a polynomial over any field \mathbb{F} of degree $n \geq 1$ has at most n roots.
Proof: Let $P(n)$ be the statement that all polynomials over \mathbb{F} of degree n have at most n roots. We prove this by induction on n.

Roots Over a Field

Proposition: Prove that a polynomial over any field \mathbb{F} of degree $n \geq 1$ has at most n roots.
Proof: Let $P(n)$ be the statement that all polynomials over \mathbb{F} of degree n have at most n roots. We prove this by induction on n. Base Case: If $n=1$, let $a x+b \in \mathbb{F}[x]$, with $a \neq 0$. Solving for a root gives $x=-a^{-1} b$ which exists since a is a nonzero element in a field and hence has a multiplicative inverse.

Roots Over a Field

Proposition: Prove that a polynomial over any field \mathbb{F} of degree $n \geq 1$ has at most n roots.
Proof: Let $P(n)$ be the statement that all polynomials over \mathbb{F} of degree n have at most n roots. We prove this by induction on n. Base Case: If $n=1$, let $a x+b \in \mathbb{F}[x]$, with $a \neq 0$. Solving for a root gives $x=-a^{-1} b$ which exists since a is a nonzero element in a field and hence has a multiplicative inverse. Induction Hypothesis: Assume that $P(k)$ is true for some $k \in \mathbb{N}$.

Roots Over a Field

Proposition: Prove that a polynomial over any field \mathbb{F} of degree $n \geq 1$ has at most n roots.
Proof: Let $P(n)$ be the statement that all polynomials over \mathbb{F} of degree n have at most n roots. We prove this by induction on n. Base Case: If $n=1$, let $a x+b \in \mathbb{F}[x]$, with $a \neq 0$. Solving for a root gives $x=-a^{-1} b$ which exists since a is a nonzero element in a field and hence has a multiplicative inverse. Induction Hypothesis: Assume that $P(k)$ is true for some $k \in \mathbb{N}$. Inductive step: Let $p(x) \in \mathbb{F}[x]$ be a degree $k+1$ polynomial. Either $p(x)$ has no root in which case we are done or $p(x)$ has a root, say $c \in \mathbb{F}$. By the Factor Theorem, $x-c$ is a factor of $p(x)$. Write $p(x)=(x-c) q(x)$ for some $q(x) \in \mathbb{F}[x]$ of degree k. By the inductive hypothesis, $q(x)$ has at most k roots. Thus, $p(x)$ has at most $k+1$ roots. Therefore, by the Principle of Mathematical Induction, $P(n)$ is true for all natural numbers n.

Fundamental Theorem of Algebra (FTA)

Theorem: (Fundamental Theorem of Algebra (FTA)) Every non-constant complex polynomial has a complex root.

Fundamental Theorem of Algebra (FTA)

Theorem: (Fundamental Theorem of Algebra (FTA)) Every non-constant complex polynomial has a complex root.

The polynomial $x^{2}+1$ over \mathbb{R} shows that this does not happen over all fields.

Complex Polynomials of Degree n Have n Roots (CPN)

Theorem: (Complex Polynomials of Degree n Have n Roots (CPN)) A complex polynomial $f(z)$ of degree $n \geq 1$ can be written as

$$
f(z)=c\left(z-c_{1}\right)\left(z-c_{2}\right) \ldots\left(z-c_{n}\right)
$$

for some $c \in \mathbb{C}$ where $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{C}$ are the (not necessarily distinct) roots of $f(z)$.

Example: The polynomial $2 z^{7}+z^{5}+i z+7$ can be written as

$$
2\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{7}\right)
$$

for some roots $z_{1}, z_{2}, \ldots, z_{7} \in \mathbb{C}$.

CPN Proof

Proof: (of CPN) We prove that a complex polynomial $f(z)$ of degree $n \geq 1$ can be written as $f(z)=c\left(z-c_{1}\right)\left(z-c_{2}\right) \ldots\left(z-c_{n}\right)$. Base Case: When $n=1$, take $a z+b \in \mathbb{C}[z]$ where $a \neq 0$ and rewrite this as $a\left(z-\frac{-b}{a}\right)$.

CPN Proof

Proof: (of CPN) We prove that a complex polynomial $f(z)$ of degree $n \geq 1$ can be written as $f(z)=c\left(z-c_{1}\right)\left(z-c_{2}\right) \ldots\left(z-c_{n}\right)$. Base Case: When $n=1$, take $a z+b \in \mathbb{C}[z]$ where $a \neq 0$ and rewrite this as $a\left(z-\frac{-b}{a}\right)$.
Inductive Hypothesis: Assume all polynomials over \mathbb{C} of degree k can be written in the given form for some $k \in \mathbb{N}$.

CPN Proof

Proof: (of CPN) We prove that a complex polynomial $f(z)$ of degree $n \geq 1$ can be written as $f(z)=c\left(z-c_{1}\right)\left(z-c_{2}\right) \ldots\left(z-c_{n}\right)$. Base Case: When $n=1$, take $a z+b \in \mathbb{C}[z]$ where $a \neq 0$ and rewrite this as $a\left(z-\frac{-b}{a}\right)$.
Inductive Hypothesis: Assume all polynomials over \mathbb{C} of degree k can be written in the given form for some $k \in \mathbb{N}$. Inductive Step: Take $f(z) \in \mathbb{C}[z]$ of degree $k+1$. By the Fundamental Theorem of Algebra and the Factor Theorem there is a factor $z-c_{k+1}$ of $f(z)$ for some $c_{k+1} \in \mathbb{C}$. Write $f(z)=\left(z-c_{k+1}\right) g(z)$ where $g(z)$ has degree k. By the inductive hypothesis, write $g(z)=c\left(z-c_{1}\right) \ldots\left(z-c_{k}\right)$ for $c_{1}, c_{2}, \ldots c_{k} \in \mathbb{C}$. Combine to get

$$
f(z)=c \prod_{i=1}^{k+1}\left(z-c_{i}\right)
$$

Therefore, by the Principle of Mathematical Induction, the given statement is true for all $n \in \mathbb{N}$.

Rational Roots Theorem (RRT)

Theorem: Rational Roots Theorem (RRT) If $f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0} \in \mathbb{Z}[x]$ and $r=\frac{s}{t} \in \mathbb{Q}$ is a root of $f(x)$ over \mathbb{Q} in lowest terms, then $s \mid a_{0}$ and $t \mid a_{n}$.

Rational Roots Theorem (RRT)

Theorem: Rational Roots Theorem (RRT) If $f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0} \in \mathbb{Z}[x]$ and $r=\frac{s}{t} \in \mathbb{Q}$ is a root of $f(x)$ over \mathbb{Q} in lowest terms, then $s \mid a_{0}$ and $t \mid a_{n}$.

Proof: Plug r into $f(x)$:

$$
0=a_{n}\left(\frac{s}{t}\right)^{n}+\ldots+a_{1}\left(\frac{s}{t}\right)+a_{0} .
$$

Multiply by t^{n}

$$
0=a_{n} s^{n}+a_{n-1} s^{n-1} t+\ldots+a_{1} s t^{n-1}+a_{0} t^{n}
$$

Rearranging gives

$$
a_{0} t^{n}=-s\left(a_{n} s^{n-1}+a_{n-1} s^{n-2} t+\ldots+a_{1} t^{n-1}\right)
$$

and hence $s \mid a_{0} t^{n}$. Since $\operatorname{gcd}(s, t)=1$, we see that $\operatorname{gcd}\left(s, t^{n}\right)=1$ and hence $s \mid a_{0}$ by Coprimeness and Divisibility. Similarly, $t \mid a_{n}$.

Conjugate Roots Theorem (CJRT)

Theorem: (Conjugate Roots Theorem (CJRT)) If $c \in \mathbb{C}$ is a root of a polynomial $p(x) \in \mathbb{R}[x]$ (over \mathbb{C}) then \bar{c} is a root of $p(x)$.

Conjugate Roots Theorem (CJRT)

Theorem: (Conjugate Roots Theorem (CJRT)) If $c \in \mathbb{C}$ is a root of a polynomial $p(x) \in \mathbb{R}[x]$ (over \mathbb{C}) then \bar{c} is a root of $p(x)$.

Proof: Write $p(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0} \in \mathbb{R}[x]$ with $p(c)=0$. Then:

$$
\begin{array}{rlr}
p(\bar{c}) & =a_{n}(\bar{c})^{n}+\ldots+a_{1} \bar{c}+a_{0} \\
& =\overline{a_{n}(c)^{n}}+\ldots+\overline{a_{1} c}+\overline{a_{0}} & \\
\text { Since coefficients are real and PCJ. } \\
& =\overline{a_{n}(c)^{n}+\ldots+a_{1} c+a_{0}} & \text { By PCJ } \\
& =\overline{p(c)} & \\
& =0 &
\end{array}
$$

