Carmen's Core Concepts (Math 135)

Carmen Bruni

University of Waterloo

Week 11 Part 1

- 2 Remainder Theorem (RT)
- **3** Factor Theorem (FT)
- 4 Roots Over a Field
- 5 Fundamental Theorem of Algebra (FTA)
- 6 Complex Polynomials of Degree *n* Have *n* Roots (CPN)
- 7 CPN Proof
- 8 Rational Roots Theorem (RRT)
- Onjugate Roots Theorem (CJRT)

Let f(x) and g(x) be nonzero polynomials over a field \mathbb{F} such that they are not additive inverses. Then

- $\deg(f(x) + g(x)) \le \max\{\deg(f(x)), \deg(g(x))\}$
- $\deg(f(x)g(x)) = \deg(f(x)) + \deg(g(x))$
- If $f(x) \mid g(x)$ and $g(x) \mid f(x)$, then f(x) = cg(x) for some $c \in \mathbb{F}$

Theorem: (Remainder Theorem (RT)) Suppose that $f(x) \in \mathbb{F}[x]$ and that $c \in \mathbb{F}$. Then, the remainder when f(x) is divided by x - c is f(c).

Theorem: (Remainder Theorem (RT)) Suppose that $f(x) \in \mathbb{F}[x]$ and that $c \in \mathbb{F}$. Then, the remainder when f(x) is divided by x - c is f(c).

Proof: By the Division Algorithm for Polynomials, there exists unique q(x) and r(x) in $\mathbb{F}[x]$ such that

$$f(x) = (x - c)q(x) + r(x)$$

with r(x) = 0 or $\deg(r(x)) < \deg(x - c) = 1$. Therefore, $\deg(r(x)) = 0$. In either case, r(x) = k for some $k \in \mathbb{F}$. Plug in x = c into the above equation to see that f(c) = r(c) = k. Hence r(x) = f(c). **Theorem:** (Factor Theorem (FT)) Suppose that $f(x) \in \mathbb{F}[x]$ and $c \in \mathbb{F}$. Then the polynomial x - c is a factor of f(x) if and only if f(c) = 0, that is, c is a root of f(x).

Theorem: (Factor Theorem (FT)) Suppose that $f(x) \in \mathbb{F}[x]$ and $c \in \mathbb{F}$. Then the polynomial x - c is a factor of f(x) if and only if f(c) = 0, that is, c is a root of f(x).

Proof: Note that x - c is a factor of f(x) if and only if r(x) = 0 via the Division Algorithm for Polynomials (DAP) which holds if and only if r(x) = f(c) = 0 via the Remainder Theorem (RT).

Roots Over a Field

Proposition: Prove that a polynomial over any field \mathbb{F} of degree $n \ge 1$ has at most *n* roots.

Proof: Let P(n) be the statement that all polynomials over \mathbb{F} of degree *n* have at most *n* roots. We prove this by induction on *n*.

Roots Over a Field

Proposition: Prove that a polynomial over any field \mathbb{F} of degree $n \ge 1$ has at most *n* roots.

Proof: Let P(n) be the statement that all polynomials over \mathbb{F} of degree *n* have at most *n* roots. We prove this by induction on *n*. **Base Case:** If n = 1, let $ax + b \in \mathbb{F}[x]$, with $a \neq 0$. Solving for a root gives $x = -a^{-1}b$ which exists since *a* is a nonzero element in a field and hence has a multiplicative inverse.

Proposition: Prove that a polynomial over any field \mathbb{F} of degree $n \ge 1$ has at most *n* roots.

Proof: Let P(n) be the statement that all polynomials over \mathbb{F} of degree *n* have at most *n* roots. We prove this by induction on *n*. **Base Case:** If n = 1, let $ax + b \in \mathbb{F}[x]$, with $a \neq 0$. Solving for a root gives $x = -a^{-1}b$ which exists since *a* is a nonzero element in a field and hence has a multiplicative inverse.

Induction Hypothesis: Assume that P(k) is true for some $k \in \mathbb{N}$.

Proposition: Prove that a polynomial over any field \mathbb{F} of degree $n \ge 1$ has at most *n* roots.

Proof: Let P(n) be the statement that all polynomials over \mathbb{F} of degree *n* have at most *n* roots. We prove this by induction on *n*. **Base Case:** If n = 1, let $ax + b \in \mathbb{F}[x]$, with $a \neq 0$. Solving for a root gives $x = -a^{-1}b$ which exists since *a* is a nonzero element in a field and hence has a multiplicative inverse.

Induction Hypothesis: Assume that P(k) is true for some $k \in \mathbb{N}$. **Inductive step:** Let $p(x) \in \mathbb{F}[x]$ be a degree k + 1 polynomial. Either p(x) has no root in which case we are done or p(x) has a root, say $c \in \mathbb{F}$. By the Factor Theorem, x - c is a factor of p(x). Write p(x) = (x - c)q(x) for some $q(x) \in \mathbb{F}[x]$ of degree k. By the inductive hypothesis, q(x) has at most k roots. Thus, p(x) has at most k + 1 roots. Therefore, by the Principle of Mathematical Induction, P(n) is true for all natural numbers n.

Theorem: (Fundamental Theorem of Algebra (FTA)) Every non-constant complex polynomial has a complex root.

Theorem: (Fundamental Theorem of Algebra (FTA)) Every non-constant complex polynomial has a complex root.

The polynomial $x^2 + 1$ over \mathbb{R} shows that this does not happen over all fields.

Theorem: (Complex Polynomials of Degree *n* Have *n* Roots (CPN)) A complex polynomial f(z) of degree $n \ge 1$ can be written as

$$f(z) = c(z - c_1)(z - c_2)...(z - c_n)$$

for some $c \in \mathbb{C}$ where $c_1, c_2, ..., c_n \in \mathbb{C}$ are the (not necessarily distinct) roots of f(z).

Example: The polynomial $2z^7 + z^5 + iz + 7$ can be written as

$$2(z-z_1)(z-z_2)...(z-z_7)$$

for some roots $z_1, z_2, ..., z_7 \in \mathbb{C}$.

CPN Proof

Proof: (of CPN) We prove that a complex polynomial f(z) of degree $n \ge 1$ can be written as $f(z) = c(z - c_1)(z - c_2)...(z - c_n)$. **Base Case:** When n = 1, take $az + b \in \mathbb{C}[z]$ where $a \ne 0$ and rewrite this as $a(z - \frac{-b}{a})$.

CPN Proof

Proof: (of CPN) We prove that a complex polynomial f(z) of degree $n \ge 1$ can be written as $f(z) = c(z - c_1)(z - c_2)...(z - c_n)$. **Base Case:** When n = 1, take $az + b \in \mathbb{C}[z]$ where $a \ne 0$ and rewrite this as $a(z - \frac{-b}{a})$.

Inductive Hypothesis: Assume all polynomials over \mathbb{C} of degree k can be written in the given form for some $k \in \mathbb{N}$.

CPN Proof

Proof: (of CPN) We prove that a complex polynomial f(z) of degree $n \ge 1$ can be written as $f(z) = c(z - c_1)(z - c_2)...(z - c_n)$. **Base Case:** When n = 1, take $az + b \in \mathbb{C}[z]$ where $a \neq 0$ and rewrite this as $a(z - \frac{-b}{2})$. **Inductive Hypothesis:** Assume all polynomials over \mathbb{C} of degree k can be written in the given form for some $k \in \mathbb{N}$. **Inductive Step:** Take $f(z) \in \mathbb{C}[z]$ of degree k + 1. By the Fundamental Theorem of Algebra and the Factor Theorem there is a factor $z - c_{k+1}$ of f(z) for some $c_{k+1} \in \mathbb{C}$. Write $f(z) = (z - c_{k+1})g(z)$ where g(z) has degree k. By the inductive hypothesis, write $g(z) = c(z - c_1)...(z - c_k)$ for $c_1, c_2, ..., c_k \in \mathbb{C}$. Combine to get

$$f(z) = c \prod_{i=1}^{k+1} (z - c_i).$$

Therefore, by the Principle of Mathematical Induction, the given statement is true for all $n \in \mathbb{N}$.

Rational Roots Theorem (RRT)

Theorem: Rational Roots Theorem (RRT) If $f(x) = a_n x^n + ... + a_1 x + a_0 \in \mathbb{Z}[x]$ and $r = \frac{s}{t} \in \mathbb{Q}$ is a root of f(x) over \mathbb{Q} in lowest terms, then $s \mid a_0$ and $t \mid a_n$.

Rational Roots Theorem (RRT)

Theorem: Rational Roots Theorem (RRT) If $f(x) = a_n x^n + ... + a_1 x + a_0 \in \mathbb{Z}[x]$ and $r = \frac{s}{t} \in \mathbb{Q}$ is a root of f(x) over \mathbb{Q} in lowest terms, then $s \mid a_0$ and $t \mid a_n$.

Proof: Plug r into f(x):

$$0 = a_n(\frac{s}{t})^n + \ldots + a_1(\frac{s}{t}) + a_0.$$

Multiply by t^n

$$0 = a_n s^n + a_{n-1} s^{n-1} t + \dots + a_1 s t^{n-1} + a_0 t^n.$$

Rearranging gives

$$a_0t^n = -s(a_ns^{n-1} + a_{n-1}s^{n-2}t + \dots + a_1t^{n-1})$$

and hence $s \mid a_0 t^n$. Since gcd(s, t) = 1, we see that $gcd(s, t^n) = 1$ and hence $s \mid a_0$ by Coprimeness and Divisibility. Similarly, $t \mid a_n$. **Theorem:** (Conjugate Roots Theorem (CJRT)) If $c \in \mathbb{C}$ is a root of a polynomial $p(x) \in \mathbb{R}[x]$ (over \mathbb{C}) then \overline{c} is a root of p(x).

Theorem: (Conjugate Roots Theorem (CJRT)) If $c \in \mathbb{C}$ is a root of a polynomial $p(x) \in \mathbb{R}[x]$ (over \mathbb{C}) then \overline{c} is a root of p(x).

Proof: Write $p(x) = a_n x^n + ... + a_1 x + a_0 \in \mathbb{R}[x]$ with p(c) = 0. Then:

$$p(\overline{c}) = a_n(\overline{c})^n + \dots + a_1\overline{c} + a_0$$

= $\overline{a_n(c)^n} + \dots + \overline{a_1c} + \overline{a_0}$ Since coefficients are real and PCJ.
= $\overline{a_n(c)^n + \dots + a_1c + a_0}$ By PCJ
= $\overline{p(c)}$
= 0