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Carmen Bruni Carmen’s Core Concepts (Math 135)



Polar Multiplication of Complex Numbers [PMCN]

Theorem: If z; = ricis(61) and zx = rcis(62), then

Z1Z0 = N r2Ci5(91 + 92)

Carmen Bruni Carmen’s Core Concepts (Math 135)



Polar Multiplication of Complex Numbers [PMCN]

Theorem: If z; = ricis(61) and zx = rcis(62), then
Z1Z0 = N r2Ci5(91 + 92)
Proof: We have

z12p = ri(cos(61) + isin(01))r2(cos(f2) + isin(62))
= rira(cos(f1) cos(f2) — sin(f1) sin(62)
+ i(cos(#1) sin(62) + sin(#1) cos(62)))
= rin(cos(b1 + 62) + isin(61 + 62))
= rincis(61 + 02)

where in line 3 above, we used trig identities. This completes the
proof. |
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De Moivre's Theorem [DMT]

Theorem: If 6 € R and n € Z, then

cis(0)" = (cos(8) + isin(f))" = cos(nf) + isin(nf) = cis(nb)
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De Moivre's Theorem [DMT]

Theorem: If 6 € R and n € Z, then
cis(8)" = (cos(6) + isin(6))" = cos(n@) + isin(nf) = cis(nb)

Proof: Exercise n = 0. For n > 0, use induction and [PMCN]. For
n < 0, write n = —m for some m € N. Then

cis(0)" = cis(g)™""
= (cis(0)™) ™
= cis(m@) 1
_ cos(mé) — i sin(m@)
cos2(m#) + sin?(m#)
= cos(mf) — isin(mb)

Since z71 = 2/|z\2

and cos(—m@) + i sin(—mf) = cos(mf) — i sin(mf) since cosine is
even and sine is odd.
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Complex Exponential Function

Definition: For a real 0, define

e’ .= cos(#) + isin(h) = cis(h)
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Complex Exponential Function

Definition: For a real 0, define
e’ .= cos(#) + isin(h) = cis(h)

Why?
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Complex Exponential Function

Definition: For a real 0, define
e’ .= cos(#) + isin(h) = cis(h)
Why?
@ Exponential Laws Work!

@ Derivative with respect to # makes sense.

@ Power series agree.
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Complex nth Roots Theorem [CNRT]

Theorem: Complex nth Roots Theorem (CNRT) Any nonzero
complex number has exactly n € N distinct nth roots. The roots
lie on a circle of radius |z| centred at the origin and spaced out
evenly by angles of 27r/n. Concretely, if a = re®, then solutions to
z" = a are given by z = {/re/ 027K/ for k € {0,1,....,n —1}.
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Complex nth Roots Theorem [CNRT]

Theorem: Complex nth Roots Theorem (CNRT) Any nonzero
complex number has exactly n € N distinct nth roots. The roots
lie on a circle of radius |z| centred at the origin and spaced out
evenly by angles of 27r/n. Concretely, if a = re®, then solutions to
z" = a are given by z = {/re/ 027K/ for k € {0,1,....,n —1}.

Definition: An nth root of unity is a complex number z such
that z" = 1. These are sometimes denoted by (,.
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Roots of Unity Example

Find all eighth roots of unity in standard form.
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Roots of Unity Example

Find all eighth roots of unity in standard form.
Solution: Since 18 =1 and 1 = €Y, we see from the theorem
states that z = e>/8 for k € {0,1,...,7} all gives solutions:

e?i(0)/8 — 0) +isin(0) =1

(
2™/ = cos(m/4) + isin(r/4) = %2 + i
e?™(2)/8 = cos(m/2) + isin(m/2) =i
275 — cos(3n/4) + e/t = —F 4
e?™(4)/8 — cos(7) + isin(w) =
e?™(5)/8 — cos(51/4) + isin(57/4) =

e2m(0)/8 — cos(3m/2) + isin(37/2)

(

—i
e?™(N/8 — cos(T/4) + isin(Tm/4) % - ?i

“\&
m\‘&
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Roots of Unity Example Picture

Find all eighth roots of unity in standard form.

...or we could use symmetry and a diagram.
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Watch Out! It's a Trap!

Example: Solve z° = —16z.
Might believe this has 5 solutions but it actually has 7 solutions:

z€{0,£2i, V3£ i}
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Watch Out! It's a Trap!

Example: Solve z° = —16z.
Might believe this has 5 solutions but it actually has 7 solutions:

z€{0,£2i, V3£ i}

Idea is that this is not a polynomial. Remove the zero solution and
then look at the modulus above giving |z|* = 16 and hence |z| = 2
(since modulus is a positive real number). Then multiply the

original equation by z on either side and note the right hand side is

|z|? = zZ.
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Polynomial Ring

Definition: A polynomial in x over a ring R is an expression of
the form

anx" 4+ ap_1x" 1+ ...+ a1x + ag

where ag, a1,...a, € R and n > 0 is an integer. Denote the set
(actually a ring) of all polynomials over R by R[x].

We will usually use the above definition for fields, which for us
include Q, R, C,Z, where p is a prime number. This makes life
easier for us in many of the theorems we have later. We use the
notation IF to denote one of these fields.
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Assorted Definitions

Definition:
@ The coefficient of a,x" is a,
@ A term of a polynomial is any a;x’
© The degree of a polynomial -7, a;x" is n.
© The degree of the zero polynomial is undefined (also —o0)
@ A root of a polynomial p(x) € F[x] is a value a € F such that
p(a) = 0.
Let f(x) = > 1 o aix' and g(x) = Y7, bix' be polynomials
over F[x]. Then f(x) = g(x) if and only if a; = b; for all
i€{0,1,...,n}
@ x is an indeterminate (or a variable). It has no meaning on

it's own but can be replaced by a value whenever it makes
sense to do so.

©

@ Operations on polynomials: Addition, Subtraction,
Multiplication
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Division Algorithm for Polynomials [DAP]

Theorem: Let F be a field. If f(x), g(x) € F[x] and g(x) # 0
then there exists unique polynomials g(x) and r(x) in F[x] such
that

f(x) = a(x)g(x) + r(x)

with r(x) = 0 or deg(r(x)) < deg(g(x)).
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