Carmen's Core Concepts (Math 135)

Carmen Bruni

University of Waterloo

Week 10

Carmen Bruni Carmen's Core Concepts (Math 135)

- Polar Multiplication of Complex Numbers [PMCN]
- 2 De Moivre's Theorem [DMT]
- 3 Complex Exponential Function
- 4 Complex nth Roots Theorem [CNRT]
- 5 Roots of Unity Example
- 6 Roots of Unity Example Picture
- Watch Out! It's a Trap!
- 8 Polynomial Ring
- O Assorted Definitions
- 10 Division Algorithm for Polynomials [DAP]

Polar Multiplication of Complex Numbers [PMCN]

Theorem: If $z_1 = r_1 \operatorname{cis}(\theta_1)$ and $z_2 = r_2 \operatorname{cis}(\theta_2)$, then

 $z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$

Polar Multiplication of Complex Numbers [PMCN]

Theorem: If $z_1 = r_1 \operatorname{cis}(\theta_1)$ and $z_2 = r_2 \operatorname{cis}(\theta_2)$, then

$$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$$

Proof: We have

$$z_1 z_2 = r_1(\cos(\theta_1) + i\sin(\theta_1))r_2(\cos(\theta_2) + i\sin(\theta_2))$$

= $r_1 r_2(\cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2)$
+ $i(\cos(\theta_1)\sin(\theta_2) + \sin(\theta_1)\cos(\theta_2)))$
= $r_1 r_2(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))$
= $r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$

where in line 3 above, we used trig identities. This completes the proof.

De Moivre's Theorem [DMT]

Theorem: If $\theta \in \mathbb{R}$ and $n \in \mathbb{Z}$, then

 $\operatorname{cis}(\theta)^n = (\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta) = \operatorname{cis}(n\theta)$

De Moivre's Theorem [DMT]

Theorem: If $\theta \in \mathbb{R}$ and $n \in \mathbb{Z}$, then

$$\operatorname{cis}(\theta)^n = (\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta) = \operatorname{cis}(n\theta)$$

Proof: Exercise n = 0. For n > 0, use induction and [PMCN]. For n < 0, write n = -m for some $m \in \mathbb{N}$. Then

$$cis(\theta)^{n} = cis(\theta)^{-m}$$

= $(cis(\theta)^{m})^{-1}$
= $cis(m\theta)^{-1}$
= $\frac{cos(m\theta) - i sin(m\theta)}{cos^{2}(m\theta) + sin^{2}(m\theta)}$ Since $z^{-1} = \overline{z}/|z|^{2}$
= $cos(m\theta) - i sin(m\theta)$

and $\cos(-m\theta) + i\sin(-m\theta) = \cos(m\theta) - i\sin(m\theta)$ since cosine is even and sine is odd.

Definition: For a real θ , define

$$e^{i\theta} := \cos(\theta) + i\sin(\theta) = \operatorname{cis}(\theta)$$

Definition: For a real θ , define

$$e^{i\theta} := \cos(\theta) + i\sin(\theta) = \operatorname{cis}(\theta)$$

Why?

Definition: For a real θ , define

$$e^{i\theta} := \cos(\theta) + i\sin(\theta) = \operatorname{cis}(\theta)$$

Why?

- Exponential Laws Work!
- Derivative with respect to θ makes sense.
- Power series agree.

Theorem: Complex *n*th Roots Theorem (CNRT) Any nonzero complex number has exactly $n \in \mathbb{N}$ distinct *n*th roots. The roots lie on a circle of radius |z| centred at the origin and spaced out evenly by angles of $2\pi/n$. Concretely, if $a = re^{i\theta}$, then solutions to $z^n = a$ are given by $z = \sqrt[n]{r}e^{i(\theta+2\pi k)/n}$ for $k \in \{0, 1, ..., n-1\}$.

Theorem: Complex *n*th Roots Theorem (CNRT) Any nonzero complex number has exactly $n \in \mathbb{N}$ distinct *n*th roots. The roots lie on a circle of radius |z| centred at the origin and spaced out evenly by angles of $2\pi/n$. Concretely, if $a = re^{i\theta}$, then solutions to $z^n = a$ are given by $z = \sqrt[n]{r}e^{i(\theta+2\pi k)/n}$ for $k \in \{0, 1, ..., n-1\}$.

Definition: An *n*th root of unity is a complex number *z* such that $z^n = 1$. These are sometimes denoted by ζ_n .

Roots of Unity Example

Find all eighth roots of unity in standard form.

Roots of Unity Example

Find all eighth roots of unity in standard form. **Solution:** Since $1^8 = 1$ and $1 = e^0$, we see from the theorem states that $z = e^{2\pi i k/8}$ for $k \in \{0, 1, ..., 7\}$ all gives solutions:

$$e^{2\pi i(0)/8} = \cos(0) + i\sin(0) = 1$$

$$e^{2\pi i(1)/8} = \cos(\pi/4) + i\sin(\pi/4) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$

$$e^{2\pi i(2)/8} = \cos(\pi/2) + i\sin(\pi/2) = i$$

$$e^{2\pi i(3)/8} = \cos(3\pi/4) + i\sin(3\pi/4) = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$

$$e^{2\pi i(4)/8} = \cos(\pi) + i\sin(\pi) = -1$$

$$e^{2\pi i(5)/8} = \cos(5\pi/4) + i\sin(5\pi/4) = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$$

$$e^{2\pi i(6)/8} = \cos(3\pi/2) + i\sin(3\pi/2) = -i$$

$$e^{2\pi i(7)/8} = \cos(7\pi/4) + i\sin(7\pi/4) = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$$

Roots of Unity Example Picture

Find all eighth roots of unity in standard form. ...or we could use symmetry and a diagram.

Example: Solve $z^5 = -16\overline{z}$.

Might believe this has 5 solutions but it actually has 7 solutions:

$$z \in \{0, \pm 2i, \pm \sqrt{3} \pm i\}$$

Example: Solve $z^5 = -16\overline{z}$.

Might believe this has 5 solutions but it actually has 7 solutions:

$$z \in \{0, \pm 2i, \pm \sqrt{3} \pm i\}$$

Idea is that this is not a polynomial. Remove the zero solution and then look at the modulus above giving $|z|^4 = 16$ and hence |z| = 2 (since modulus is a positive real number). Then multiply the original equation by z on either side and note the right hand side is $|z|^2 = z\bar{z}$.

Definition: A polynomial in x over a ring R is an expression of the form

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where $a_0, a_1, ..., a_n \in R$ and $n \ge 0$ is an integer. Denote the set (actually a ring) of all polynomials over R by R[x].

We will usually use the above definition for fields, which for us include $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_p$ where p is a prime number. This makes life easier for us in many of the theorems we have later. We use the notation \mathbb{F} to denote one of these fields.

Assorted Definitions

Definition:

- The coefficient of $a_n x^n$ is a_n
- 2 A term of a polynomial is any $a_i x^i$
- **3** The degree of a polynomial $\sum_{i=0}^{n} a_i x^i$ is *n*.
- () The degree of the zero polynomial is undefined (also $-\infty$)
- A root of a polynomial $p(x) \in \mathbb{F}[x]$ is a value $a \in \mathbb{F}$ such that p(a) = 0.
- Let $f(x) = \sum_{i=0}^{n} a_i x^i$ and $g(x) = \sum_{i=0}^{n} b_i x^i$ be polynomials over $\mathbb{F}[x]$. Then f(x) = g(x) if and only if $a_i = b_i$ for all $i \in \{0, 1, ..., n\}$.
- x is an indeterminate (or a variable). It has no meaning on it's own but can be replaced by a value whenever it makes sense to do so.
- Operations on polynomials: Addition, Subtraction, Multiplication

Theorem: Let \mathbb{F} be a field. If $f(x), g(x) \in \mathbb{F}[x]$ and $g(x) \neq 0$ then there exists unique polynomials q(x) and r(x) in $\mathbb{F}[x]$ such that

$$f(x) = q(x)g(x) + r(x)$$

with r(x) = 0 or $\deg(r(x)) < \deg(g(x))$.