Carmen's Core Concepts (Math 135)

Carmen Bruni

University of Waterloo

Week 10

(1) Polar Multiplication of Complex Numbers [PMCN]
(2) De Moivre's Theorem [DMT]
(3) Complex Exponential Function

4 Complex nth Roots Theorem [CNRT]
(5) Roots of Unity Example
(6) Roots of Unity Example Picture
(7) Watch Out! It's a Trap!
(8) Polynomial Ring
(9) Assorted Definitions
(10) Division Algorithm for Polynomials [DAP]

Polar Multiplication of Complex Numbers [PMCN]

Theorem: If $z_{1}=r_{1} \operatorname{cis}\left(\theta_{1}\right)$ and $z_{2}=r_{2} \operatorname{cis}\left(\theta_{2}\right)$, then

$$
z_{1} z_{2}=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)
$$

Polar Multiplication of Complex Numbers [PMCN]

Theorem: If $z_{1}=r_{1} \operatorname{cis}\left(\theta_{1}\right)$ and $z_{2}=r_{2} \operatorname{cis}\left(\theta_{2}\right)$, then

$$
z_{1} z_{2}=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)
$$

Proof: We have

$$
\begin{aligned}
z_{1} z_{2}= & r_{1}\left(\cos \left(\theta_{1}\right)+i \sin \left(\theta_{1}\right)\right) r_{2}\left(\cos \left(\theta_{2}\right)+i \sin \left(\theta_{2}\right)\right) \\
= & r_{1} r_{2}\left(\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)\right. \\
& \left.\quad \quad+i\left(\cos \left(\theta_{1}\right) \sin \left(\theta_{2}\right)+\sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right)\right)\right) \\
= & r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right) \\
= & r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

where in line 3 above, we used trig identities. This completes the proof.

De Moivre's Theorem [DMT]

Theorem: If $\theta \in \mathbb{R}$ and $n \in \mathbb{Z}$, then

$$
\operatorname{cis}(\theta)^{n}=(\cos (\theta)+i \sin (\theta))^{n}=\cos (n \theta)+i \sin (n \theta)=\operatorname{cis}(n \theta)
$$

De Moivre's Theorem [DMT]

Theorem: If $\theta \in \mathbb{R}$ and $n \in \mathbb{Z}$, then

$$
\operatorname{cis}(\theta)^{n}=(\cos (\theta)+i \sin (\theta))^{n}=\cos (n \theta)+i \sin (n \theta)=\operatorname{cis}(n \theta)
$$

Proof: Exercise $n=0$. For $n>0$, use induction and [PMCN]. For $n<0$, write $n=-m$ for some $m \in \mathbb{N}$. Then

$$
\begin{aligned}
\operatorname{cis}(\theta)^{n} & =\operatorname{cis}(\theta)^{-m} \\
& =\left(\operatorname{cis}(\theta)^{m}\right)^{-1} \\
& =\operatorname{cis}(m \theta)^{-1} \\
& =\frac{\cos (m \theta)-i \sin (m \theta)}{\cos ^{2}(m \theta)+\sin ^{2}(m \theta)} \quad \text { Since } z^{-1}=\bar{z} /|z|^{2} \\
& =\cos (m \theta)-i \sin (m \theta)
\end{aligned}
$$

and $\cos (-m \theta)+i \sin (-m \theta)=\cos (m \theta)-i \sin (m \theta)$ since cosine is even and sine is odd.

Complex Exponential Function

Definition: For a real θ, define

$$
e^{i \theta}:=\cos (\theta)+i \sin (\theta)=\operatorname{cis}(\theta)
$$

Complex Exponential Function

Definition: For a real θ, define

$$
e^{i \theta}:=\cos (\theta)+i \sin (\theta)=\operatorname{cis}(\theta)
$$

Why?

Complex Exponential Function

Definition: For a real θ, define

$$
e^{i \theta}:=\cos (\theta)+i \sin (\theta)=\operatorname{cis}(\theta)
$$

Why?

- Exponential Laws Work!
- Derivative with respect to θ makes sense.
- Power series agree.

Complex nth Roots Theorem [CNRT]

Theorem: Complex nth Roots Theorem (CNRT) Any nonzero complex number has exactly $n \in \mathbb{N}$ distinct nth roots. The roots lie on a circle of radius $|z|$ centred at the origin and spaced out evenly by angles of $2 \pi / n$. Concretely, if $a=r e^{i \theta}$, then solutions to $z^{n}=a$ are given by $z=\sqrt[n]{r} e^{i(\theta+2 \pi k) / n}$ for $k \in\{0,1, \ldots, n-1\}$.

Complex nth Roots Theorem [CNRT]

Theorem: Complex nth Roots Theorem (CNRT) Any nonzero complex number has exactly $n \in \mathbb{N}$ distinct nth roots. The roots lie on a circle of radius $|z|$ centred at the origin and spaced out evenly by angles of $2 \pi / n$. Concretely, if $a=r e^{i \theta}$, then solutions to $z^{n}=a$ are given by $z=\sqrt[n]{r} e^{i(\theta+2 \pi k) / n}$ for $k \in\{0,1, \ldots, n-1\}$.

Definition: An nth root of unity is a complex number z such that $z^{n}=1$. These are sometimes denoted by ζ_{n}.

Roots of Unity Example

Find all eighth roots of unity in standard form.

Roots of Unity Example

Find all eighth roots of unity in standard form.
Solution: Since $1^{8}=1$ and $1=e^{0}$, we see from the theorem states that $z=e^{2 \pi i k / 8}$ for $k \in\{0,1, \ldots, 7\}$ all gives solutions:

$$
\begin{aligned}
& e^{2 \pi i(0) / 8}=\cos (0)+i \sin (0)=1 \\
& e^{2 \pi i(1) / 8}=\cos (\pi / 4)+i \sin (\pi / 4)=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i \\
& e^{2 \pi i(2) / 8}=\cos (\pi / 2)+i \sin (\pi / 2)=i \\
& e^{2 \pi i(3) / 8}=\cos (3 \pi / 4)+i \sin (3 \pi / 4)=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i \\
& e^{2 \pi i(4) / 8}=\cos (\pi)+i \sin (\pi)=-1 \\
& e^{2 \pi i(5) / 8}=\cos (5 \pi / 4)+i \sin (5 \pi / 4)=-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i \\
& e^{2 \pi i(6) / 8}=\cos (3 \pi / 2)+i \sin (3 \pi / 2)=-i \\
& e^{2 \pi i(7) / 8}=\cos (7 \pi / 4)+i \sin (7 \pi / 4)=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i
\end{aligned}
$$

Roots of Unity Example Picture

Find all eighth roots of unity in standard form. ...or we could use symmetry and a diagram.

Watch Out! It's a Trap!

Example: Solve $z^{5}=-16 \bar{z}$.
Might believe this has 5 solutions but it actually has 7 solutions:

$$
z \in\{0, \pm 2 i, \pm \sqrt{3} \pm i\}
$$

Watch Out! It's a Trap!

Example: Solve $z^{5}=-16 \bar{z}$.
Might believe this has 5 solutions but it actually has 7 solutions:

$$
z \in\{0, \pm 2 i, \pm \sqrt{3} \pm i\}
$$

Idea is that this is not a polynomial. Remove the zero solution and then look at the modulus above giving $|z|^{4}=16$ and hence $|z|=2$ (since modulus is a positive real number). Then multiply the original equation by z on either side and note the right hand side is $|z|^{2}=z \bar{z}$.

Polynomial Ring

Definition: A polynomial in x over a ring R is an expression of the form

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

where $a_{0}, a_{1}, \ldots a_{n} \in R$ and $n \geq 0$ is an integer. Denote the set (actually a ring) of all polynomials over R by $R[x]$.

We will usually use the above definition for fields, which for us include $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_{p}$ where p is a prime number. This makes life easier for us in many of the theorems we have later. We use the notation \mathbb{F} to denote one of these fields.

Assorted Definitions

Definition:

(1) The coefficient of $a_{n} x^{n}$ is a_{n}
(2) A term of a polynomial is any $a_{i} x^{i}$
(3) The degree of a polynomial $\sum_{i=0}^{n} a_{i} x^{i}$ is n.
(9) The degree of the zero polynomial is undefined (also $-\infty$)
(3) A root of a polynomial $p(x) \in \mathbb{F}[x]$ is a value $a \in \mathbb{F}$ such that $p(a)=0$.
(0) Let $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$ and $g(x)=\sum_{i=0}^{n} b_{i} x^{i}$ be polynomials over $\mathbb{F}[x]$. Then $f(x)=g(x)$ if and only if $a_{i}=b_{i}$ for all $i \in\{0,1, \ldots, n\}$.
(1) x is an indeterminate (or a variable). It has no meaning on it's own but can be replaced by a value whenever it makes sense to do so.
(3) Operations on polynomials: Addition, Subtraction, Multiplication

Division Algorithm for Polynomials [DAP]

Theorem: Let \mathbb{F} be a field. If $f(x), g(x) \in \mathbb{F}[x]$ and $g(x) \neq 0$ then there exists unique polynomials $q(x)$ and $r(x)$ in $\mathbb{F}[x]$ such that

$$
f(x)=q(x) g(x)+r(x)
$$

with $r(x)=0$ or $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$.

