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What is Math 135?

First proofs course

Proofs differentiate mathematics from science

Reading, writing and discovering proofs

Goldilocks. Writing just the right amount with good and
proper explanations.
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Truth Tables as a Definition

Basic building block of mathematics.

Throughout let A and B be statements.

Saw ¬A, A ∧ B, A ∨ B, A⇒ B.

A B A ∧ B A ∨ B A⇒ B

T T T T T
T F F T F
F T F T T
F F F F T
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De Morgan’s Laws

Truth Tables as Method of Proof

¬(A ∧ B) ≡ ¬A ∨ ¬B and ¬(A ∨ B) ≡ ¬A ∧ ¬B.

Can prove using truth table:

A B A ∨ B ¬(A ∨ B) ¬A ¬B ¬A ∧ ¬B
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

Helps to form chains of equivalences.
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Using Chains of Equivalences

Recall: A⇒ B ≡ ¬A ∨ B.

Prove that ¬(A⇒ B) ≡ A ∧ ¬B

Proof:

¬(A⇒ B) ≡ ¬(¬A ∨ B) By the above proposition

≡ ¬(¬A) ∧ ¬B De Morgan’s Law

≡ A ∧ ¬B By proposition from class
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Direct Proof

Proving an equality (or inequality).

sin(3θ) = 3 sin(θ)− 4 sin3(θ)

Proof:

LHS = sin(3θ)

= sin(2θ + θ)

= sin(2θ) cos(θ) + sin(θ) cos(2θ) Trig Identity

= (2 sin(θ) cos(θ)) cos(θ)

+ sin(θ)(cos2(θ)− sin2(θ)) Trig Identity

= 3 sin(θ) cos2(θ)− sin3(θ))

= 3 sin(θ)(1− sin2(θ))− sin3(θ)) Pythagorean Identity

= 3 sin(θ)− 4 sin3(θ)

= RHS
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Direct Proof From a True Statement

Prove 5x2y − 3y2 ≤ x4 + x2y + y2, x , y ∈ R

Proof: Since 0 ≤ (x2 − 2y)2, we have

0 ≤ (x2 − 2y)2

0 ≤ x4 − 4x2y + 4y2

5x2y − 3y2 ≤ x4 − 4x2y + 4y2 + 5x2y − 3y2

5x2y − 3y2 ≤ x4 + x2y + y2

Discovery:

5x2y − 3y2 ≤ x4 + x2y + y2

0 ≤ x4 + x2y + y2 − 5x2y + 3y2

0 ≤ x4 − 4x2y + 4y2

0 ≤ (x2 − 2y)2.
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Direct Proof Breaking Into Cases

Let n ∈ Z. If 22n is an odd integer, then 2−2n is also an odd
integer.

Proof: Note that the hypothesis is only true when n = 0. If
n < 0, then 22n is not an integer. If n > 0 then 22n = 2 · 22n−1

and since 2n − 1 > 0, we see that 22n is even. Hence n = 0
and thus 22n = 1 = 2−2n. Thus 2−2n is an odd integer.

Some examples of ways to beak into cases:
1 Even vs odd
2 Positive vs negative vs zero
3 a ≤ b and b ≤ a for integers a and b

Carmen Bruni Carmen’s Core Concepts (Math 135)



Divisibility

Let m, n ∈ Z. We say that m divides n and write m | n if (and
only if) there exists a k ∈ Z such that mk = n. Otherwise, we
write m - n, that is, when there is no integer k satisfying
mk = n.
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Bounds By Divisibility (BBD)

a | b ∧ b 6= 0⇒ |a| ≤ |b|
Note: If we don’t specify the domain for variables, take it to
be maximal.

Proof: Let a, b ∈ Z such that a | b and b 6= 0. Then ∃k ∈ Z
such that ak = b. Since b 6= 0, we know that k 6= 0. Thus,
|a| ≤ |a||k | = |ak| = |b| as required.

Reminder Symbol (and theorem) cheat sheets can be found
on the Math 135 Resources Page.
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