Carmen's Core Concepts (Math 135)

Carmen Bruni

University of Waterloo

Week 1

- 1 What is Math 135?
- 2 Truth Tables as a Definition
- 3 De Morgan's Laws
- 4 Using Chains of Equivalences to Prove Logical Statements
- Direct Proof
- 6 Direct Proof From a True Statement
- Direct Proof Breaking Into Cases
- 8 Divisibility
- 9 Bounds By Divisibility

What is Math 135?

- First proofs course
- Proofs differentiate mathematics from science
- Reading, writing and discovering proofs
- Goldilocks. Writing just the right amount with good and proper explanations.

Truth Tables as a Definition

- Basic building block of mathematics.
- Throughout let A and B be statements.
- Saw $\neg A$, $A \land B$, $A \lor B$, $A \Rightarrow B$.

A	В	$A \wedge B$	$A \vee B$	$A \Rightarrow B$
Т	Т	Т	Т	Т
T	F	F	Т	F
F	Т	F	Т	T
F	F	F	F	Т

De Morgan's Laws

- Truth Tables as Method of Proof
- $\neg (A \land B) \equiv \neg A \lor \neg B$ and $\neg (A \lor B) \equiv \neg A \land \neg B$.
- Can prove using truth table:

Α	В	$A \vee B$	$\neg (A \lor B)$	$\neg A$	$\neg B$	$\neg A \wedge \neg B$
Т	Т	Т	F	F	F	F
T	F	Т	F	F	T	F
F	Т	Т	F	Т	F	F
F	F	F	Т	Т	Т	Т

• Helps to form chains of equivalences.

Using Chains of Equivalences

- Recall: $A \Rightarrow B \equiv \neg A \lor B$.
- Prove that $\neg(A \Rightarrow B) \equiv A \land \neg B$

Proof:

$$\neg(A \Rightarrow B) \equiv \neg(\neg A \lor B)$$
 By the above proposition
$$\equiv \neg(\neg A) \land \neg B$$
 De Morgan's Law
$$\equiv A \land \neg B$$
 By proposition from class

Direct Proof

- Proving an equality (or inequality).
- $\sin(3\theta) = 3\sin(\theta) 4\sin^3(\theta)$

Proof:

LHS =
$$\sin(3\theta)$$

= $\sin(2\theta + \theta)$
= $\sin(2\theta)\cos(\theta) + \sin(\theta)\cos(2\theta)$ Trig Identity
= $(2\sin(\theta)\cos(\theta))\cos(\theta)$
+ $\sin(\theta)(\cos^2(\theta) - \sin^2(\theta))$ Trig Identity
= $3\sin(\theta)\cos^2(\theta) - \sin^3(\theta))$
= $3\sin(\theta)(1 - \sin^2(\theta)) - \sin^3(\theta))$ Pythagorean Identity
= $3\sin(\theta) - 4\sin^3(\theta)$
= RHS

Direct Proof From a True Statement

• Prove
$$5x^2y - 3y^2 \le x^4 + x^2y + y^2$$
, $x, y \in \mathbb{R}$

Proof: Since
$$0 \le (x^2 - 2y)^2$$
, we have
$$0 \le (x^2 - 2y)^2$$
$$0 \le x^4 - 4x^2y + 4y^2$$
$$5x^2y - 3y^2 \le x^4 - 4x^2y + 4y^2 + 5x^2y - 3y^2$$
$$5x^2y - 3y^2 \le x^4 + x^2y + y^2$$

Discovery:

$$5x^{2}y - 3y^{2} \le x^{4} + x^{2}y + y^{2}$$

$$0 \le x^{4} + x^{2}y + y^{2} - 5x^{2}y + 3y^{2}$$

$$0 \le x^{4} - 4x^{2}y + 4y^{2}$$

$$0 \le (x^{2} - 2y)^{2}.$$

Direct Proof Breaking Into Cases

• Let $n \in \mathbb{Z}$. If 2^{2n} is an odd integer, then 2^{-2n} is also an odd integer.

Proof: Note that the hypothesis is only true when n = 0. If n < 0, then 2^{2n} is not an integer. If n > 0 then $2^{2n} = 2 \cdot 2^{2n-1}$ and since 2n - 1 > 0, we see that 2^{2n} is even. Hence n = 0 and thus $2^{2n} = 1 = 2^{-2n}$. Thus 2^{-2n} is an odd integer.

- Some examples of ways to beak into cases:
 - Even vs odd
 - Positive vs negative vs zero
 - 3 $a \le b$ and $b \le a$ for integers a and b

Divisibility

• Let $m, n \in \mathbb{Z}$. We say that m divides n and write $m \mid n$ if (and only if) there exists a $k \in \mathbb{Z}$ such that mk = n. Otherwise, we write $m \nmid n$, that is, when there is no integer k satisfying mk = n.

Bounds By Divisibility (BBD)

- $a \mid b \land b \neq 0 \Rightarrow |a| \leq |b|$
- Note: If we don't specify the domain for variables, take it to be maximal.

Proof: Let $a, b \in \mathbb{Z}$ such that $a \mid b$ and $b \neq 0$. Then $\exists k \in \mathbb{Z}$ such that ak = b. Since $b \neq 0$, we know that $k \neq 0$. Thus, $|a| \leq |a| |k| = |ak| = |b|$ as required.

 Reminder Symbol (and theorem) cheat sheets can be found on the Math 135 Resources Page.