Carmen's Core Concepts (Math 135)

Carmen Bruni

University of Waterloo

Week 1

(1) What is Math 135 ?
(2) Truth Tables as a Definition
(3) De Morgan's Laws
(4) Using Chains of Equivalences to Prove Logical Statements
(5) Direct Proof
(6) Direct Proof From a True Statement
(7) Direct Proof Breaking Into Cases
(8) Divisibility
(9) Bounds By Divisibility

What is Math $135 ?$

- First proofs course
- Proofs differentiate mathematics from science
- Reading, writing and discovering proofs
- Goldilocks. Writing just the right amount with good and proper explanations.

Truth Tables as a Definition

- Basic building block of mathematics.
- Throughout let A and B be statements.
- Saw $\neg A, A \wedge B, A \vee B, A \Rightarrow B$.

A	B	$A \wedge B$	$A \vee B$	$A \Rightarrow B$
T	T	T	T	T
T	F	F	T	F
F	T	F	T	T
F	F	F	F	T

De Morgan's Laws

- Truth Tables as Method of Proof
- $\neg(A \wedge B) \equiv \neg A \vee \neg B$ and $\neg(A \vee B) \equiv \neg A \wedge \neg B$.
- Can prove using truth table:

A	B	$A \vee B$	$\neg(A \vee B)$	$\neg A$	$\neg B$	$\neg A \wedge \neg B$
T	T	T	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

- Helps to form chains of equivalences.

Using Chains of Equivalences

- Recall: $A \Rightarrow B \equiv \neg A \vee B$.
- Prove that $\neg(A \Rightarrow B) \equiv A \wedge \neg B$

Proof:

$$
\begin{aligned}
\neg(A \Rightarrow B) & \equiv \neg(\neg A \vee B) & & \text { By the above proposition } \\
& \equiv \neg(\neg A) \wedge \neg B & & \text { De Morgan's Law } \\
& \equiv A \wedge \neg B & & \text { By proposition from class }
\end{aligned}
$$

Direct Proof

- Proving an equality (or inequality).
- $\sin (3 \theta)=3 \sin (\theta)-4 \sin ^{3}(\theta)$

Proof:

LHS $=\sin (3 \theta)$

$$
\begin{array}{rlr}
= & \sin (2 \theta+\theta) & \\
= & \sin (2 \theta) \cos (\theta)+\sin (\theta) \cos (2 \theta) & \text { Trig Identity } \\
= & (2 \sin (\theta) \cos (\theta)) \cos (\theta) & \\
& +\sin (\theta)\left(\cos ^{2}(\theta)-\sin ^{2}(\theta)\right) & \text { Trig Identity } \\
= & \left.3 \sin (\theta) \cos ^{2}(\theta)-\sin ^{3}(\theta)\right) & \\
= & \left.3 \sin (\theta)\left(1-\sin ^{2}(\theta)\right)-\sin ^{3}(\theta)\right) & \\
= & \text { Pythagorean Identity } \\
= & 3 \sin (\theta)-4 \sin ^{3}(\theta) & \\
= & \text { RHS } &
\end{array}
$$

Direct Proof From a True Statement

- Prove $5 x^{2} y-3 y^{2} \leq x^{4}+x^{2} y+y^{2}, x, y \in \mathbb{R}$

Proof: Since $0 \leq\left(x^{2}-2 y\right)^{2}$, we have

$$
\begin{aligned}
0 & \leq\left(x^{2}-2 y\right)^{2} \\
0 & \leq x^{4}-4 x^{2} y+4 y^{2} \\
5 x^{2} y-3 y^{2} & \leq x^{4}-4 x^{2} y+4 y^{2}+5 x^{2} y-3 y^{2} \\
5 x^{2} y-3 y^{2} & \leq x^{4}+x^{2} y+y^{2}
\end{aligned}
$$

- Discovery:

$$
\begin{aligned}
5 x^{2} y-3 y^{2} & \leq x^{4}+x^{2} y+y^{2} \\
0 & \leq x^{4}+x^{2} y+y^{2}-5 x^{2} y+3 y^{2} \\
0 & \leq x^{4}-4 x^{2} y+4 y^{2} \\
0 & \leq\left(x^{2}-2 y\right)^{2} .
\end{aligned}
$$

Direct Proof Breaking Into Cases

- Let $n \in \mathbb{Z}$. If $2^{2 n}$ is an odd integer, then $2^{-2 n}$ is also an odd integer.

Proof: Note that the hypothesis is only true when $n=0$. If $n<0$, then $2^{2 n}$ is not an integer. If $n>0$ then $2^{2 n}=2 \cdot 2^{2 n-1}$ and since $2 n-1>0$, we see that $2^{2 n}$ is even. Hence $n=0$ and thus $2^{2 n}=1=2^{-2 n}$. Thus $2^{-2 n}$ is an odd integer.

- Some examples of ways to beak into cases:
(1) Even vs odd
(2) Positive vs negative vs zero
(3) $a \leq b$ and $b \leq a$ for integers a and b

Divisibility

- Let $m, n \in \mathbb{Z}$. We say that m divides n and write $m \mid n$ if (and only if) there exists a $k \in \mathbb{Z}$ such that $m k=n$. Otherwise, we write $m \nmid n$, that is, when there is no integer k satisfying $m k=n$.

Bounds By Divisibility (BBD)

- $a|b \wedge b \neq 0 \Rightarrow| a|\leq|b|$
- Note: If we don't specify the domain for variables, take it to be maximal.

Proof: Let $a, b \in \mathbb{Z}$ such that $a \mid b$ and $b \neq 0$. Then $\exists k \in \mathbb{Z}$ such that $a k=b$. Since $b \neq 0$, we know that $k \neq 0$. Thus, $|a| \leq|a||k|=|a k|=|b|$ as required.

- Reminder Symbol (and theorem) cheat sheets can be found on the Math 135 Resources Page.

