
Lecture 2

Stewart’s Theorem Let ABC be a triangle with AB = c, AC = b and BC = a.
If P is a point on BC with BP = m, PC = n and AP = d,
then dad+man = bmb+ cnc.

Proof. Proof A

c2 = m2 + d2 − 2md cos θ

b2 = n2 + d2 − 2nd cos θ′

b2 = n2 + d2 + 2nd cos θ

m2 − c2 + d2

−2md
=
b2 − n2 − d2

2nd

nc2 − nm2 − nd2 = −mb2 +mn2 +md2

nc2 −mb2 = mn2 +md2 + nm2 + nd2

cnc+ bmb = nm(n+m) + d2(m+ n)

cnc+ bmb = man+ dad

�

Note: Unclear what θ and θ′ are. No explanation. Division by variables should be careful
about 0.
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Handout or Document Camera or Class Exercise

Stewart’s Theorem Let ABC be a triangle with AB = c, AC = b and BC = a.
If P is a point on BC with BP = m, PC = n and AP = d,
then dad+man = bmb+ cnc.

Proof. Proof B

The Cosine Law on 4APB tells us that

c2 = m2 + d2 − 2md cos (∠APB).

Subtracting c2 from both sides gives

0 = −c2 +m2 + d2 − 2md cos (∠APB).

Adding 2md cos∠APB to both sides gives

2md cos (∠APB) = −c2 +m2 + d2.

Dividing both sides by 2md gives

cos (∠APB) =
−c2 +m2 + d2

2md
.

Now, the Cosine Law on 4APC tells us that

b2 = n2 + d2 − 2nd cos∠APC.

Since ∠APC and ∠APB are supplementary angles, then

cos∠APC = cos (π − ∠APB) = − cos (∠APB).

Substituting into our previous equation, we see that

b2 = n2 + d2 + 2nd cos∠APB.

Subtracting n2 from both sides gives

b2 − n2 = d2 + 2nd cos (∠APB).

Then subtracting d2 from both sides gives

b2 − n2 − d2 = 2nd cos (∠APB).
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Dividing both sides by 2nd gives

b2 − n2 − d2

2nd
= cos (∠APB).

Now we have two expressions for cos (∠APB) and equate them to yield

−c2 +m2 + d2

2md
=
b2 − n2 − d2

2nd
.

Multiplying both sides by 2mnd shows us that

n(−c2 +m2 + d2) = m(b2 − n2 − d2).

Next we distribute to get

−nc2 + nm2 + nd2 = mb2 −mn2 −md2.

Adding nc2 +mn2 +md2 to both sides gives

nm2 +mn2 + nd2 +md2 = mb2 + nc2.

Factoring twice gives:

nm(m+ n) + d2(m+ n) = mb2 + nc2.

Since P lies on BC, then a = m+ n so we substitute to yield

nma+ d2a = mb2 + nc2.

Finally, we can rewrite this as bmb+ cnc = dad+man.. �

Note: Too verbose. Can shorten the explanation by not writing out every algebraic
manipulation.
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Handout or Document Camera or Class Exercise

Stewart’s Theorem Let ABC be a triangle with AB = c, AC = b and BC = a.
If P is a point on BC with BP = m, PC = n and AP = d,
then dad+man = bmb+ cnc.

Proof. Proof C

Using the Cosine Law for supplementary angles ∠APB and ∠APC, and then clearing
denominators and simplifying gives dad+man = bmb+ cnc as required. �

Note: No details given. Need to provide some evidence of algebraic manipulation.
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Handout or Document Camera or Class Exercise

Stewart’s Theorem Let ABC be a triangle with AB = c, AC = b and BC = a.
If P is a point on BC with BP = m, PC = n and AP = d,
then dad+man = bmb+ cnc.

Proof. Proof D

The Cosine Law on 4APB tells us that

c2 = m2 + d2 − 2md cos∠APB.

Similarly, the Cosine Law on 4APC tells us that

b2 = n2 + d2 − 2nd cos∠APC.

Since ∠APC and ∠APB are supplementary angles, we have

b2 = n2 + d2 + 2nd cos∠APB.

Equating expressions for cos∠APB yields

−c2 +m2 + d2

2md
=
b2 − n2 − d2

2nd
.

Clearing the denominator and rearranging gives

nm2 +mn2 + nd2 +md2 = mb2 + nc2.

Factoring yields
mn(m+ n) + d2(m+ n) = mb2 + nc2.

Substituting a = (m+ n) gives dad+man = bmb+ cnc as required. �

Note: Overall a good proof. Perhaps some more information on why the supplementary
angle step holds would be good. Justifying why division by a variable is allowed (that is,
nonzero variables) would be a plus and perhaps labeling previous equations to reference in
the future would help this proof slightly. This would be an acceptable answer regardless
of these minor quibbles.
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Handout or Document Camera or Class Exercise

Find the flaw in the following arguments:

(i) For a, b ∈ R,

a = b

a2 = ab

a2 − b2 = ab− b2

(a− b)(a+ b) = b(a− b)
a+ b = b ERROR: division by 0 since a = b

b+ b = b

2b = b

2 = 1

(ii)

x =
π + 3

2
2x = π + 3

2x(π − 3) = (π + 3)(π − 3)

2πx− 6x = π2 − 9

9− 6x = π2 − 2πx

9− 6x+ x2 = π2 − 2πx+ x2

(3− x)2 = (π − x)2

3− x = π − x
3 = π

(iii) For x ∈ R,

(x− 1)2 ≥ 0

x2 − 2x+ 1 ≥ 0

x2 + 1 ≥ 2x

x+ 1
x
≥ 2
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Lecture 3

Find the flaw in the following arguments:

(i) (Last class)

(ii)

x =
π + 3

2
2x = π + 3

2x(π − 3) = (π + 3)(π − 3)

2πx− 6x = π2 − 9

9− 6x = π2 − 2πx

9− 6x+ x2 = π2 − 2πx+ x2

(3− x)2 = (π − x)2

3− x = π − x ERROR: |3− x| = |π − x|
3 = π

(iii) For x ∈ R,

(x− 1)2 ≥ 0

x2 − 2x+ 1 ≥ 0

x2 + 1 ≥ 2x

x+ 1
x
≥ 2 ERROR: Division by 0. Also flip sign if x < 0



Example: Let x, y ∈ R. Prove that

5x2y − 3y2 ≤ x4 + x2y + y2

Proof: Since 0 ≤ (x2 − 2y)2, we have

0 ≤ (x2 − 2y)2

0 ≤ x4 − 4x2y + 4y2

5x2y − 3y2 ≤ x4 − 4x2y + 4y2 + 5x2y − 3y2

5x2y − 3y2 ≤ x4 + x2y + y2

Alternate proof:

RHS = x4 + x2y + y2

= x4 + x2y + y2 + 5x2y − 5x2y + 3y2 − 3y2

= x4 − 4x2y + 4y2 + 5x2y − 3y2

= (x2 − 2y)2 + 5x2y − 3y2

≥ 5x2y − 3y2

= LHS

Note: To discover this proof. Play around with the given inequality on a napkin (rough
work). Manipulate it until you reach a true statement. Then write your proof starting
with the given true statement to reach the desired inequality. Notice that starting with
the given inequality is NOT valid since you do not know whether or not it is true to
begin with. New truth can only be derived from old truth. (Analogy: You need a solid
foundation to build a house). Here is a sample of my napkin work:

5x2y − 3y2 ≤ x4 + x2y + y2

0 ≤ x4 + x2y + y2 − 5x2y + 3y2

0 ≤ x4 − 4x2y + 4y2

0 ≤ (x2 − 2y)2.

The last statement is clearly true thus so long as I can reverse my steps, I have a valid
proof. Note that you must write the proof starting with the true statement and deriving
the new truth statements.

Throughout the remainder of this lecture, let A, B, C be statements.

Definition: ¬A is NOT A.

A ¬A
T F
F T

Note: : Truth tables can be used both as definitions of operators (as was done here) or
in proofs (as will be done later). Make sure you understand the difference.

Definition: A ∧B is A and B. Further, A ∨B is A or B.
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A B A ∧B A ∨B
T T T T
T F F T
F T F T
F F F F
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Handout or Document Camera or Class Exercise

Which of the following are true?

• π is irrational and 3 > 2

• 10 is even and 1 = 2

• 7 is larger than 6 or 15 is a multiple of 3

• 5 ≤ 6

• 24 is a perfect square or the vertex of parabola x2 + 2x+ 3 is (1, 1)

• 2.3 is not an integer

• 20% of 50 is not 10

• 7 is odd or 1 is positive and 2 6= 2
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Lecture 3

In the following, identify the hypothesis, the conclusion and state whether the state-
ment is true or false.

• If
√

2 is rational then 2 < 3

• If (1+1=2) then 5 · 2 = 11

• If C is a circle, then the area of C is πr2

• If 5 is even then 5 is odd

• If 4− 3 = 2 then 1 + 1 = 3
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Lecture 4

Suppose A, B and C are all true statements.

The compound statement (¬A) ∨ (B ∧ ¬C) is

A) True

B) False
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Lecture 5

Prove the following. Suppose that x, y ≥ 0. Show that x = y if and only if x+y
2

=
√
xy.
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Lecture 6

Describe the following sets using set-builder notation:

(i) Set of even numbers between 5 and 14 (inclusive).

(ii) All odd perfect squares.

(iii) Sets of three integers which are the side lengths of a (non-trivial) triangle.

(iv) All points on a circle of radius 8 centred at the origin.
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Lecture 7

Example: Prove that there is an x ∈ R such that x2+3x−3
2x+3

= 1.
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Lecture 7

Example: Show that for each x ∈ R, we have that x2 + 4x+ 7 > 0.
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Lecture 7

Sometimes ∀ and ∃ are hidden! If you encounter a statement with quantifiers, take a
moment to make sure you understand what the question is saying/asking.

Examples:

(i) 2n2 + 11n+ 15 is never prime when n is a natural number.

(ii) If n is a natural number, then 2n2 + 11n+ 15 is composite.

(iii) m−7
2m+4

= 5 for some integer m.

(iv) m−7
2m+4

= 5 has an integer solution.
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Lecture 8

Consider the following statement.

{2k : k ∈ N} ⊇ {n ∈ Z : 8 | (n+ 4)}

A well written and correct direct proof of this statement could begin with

A) We will show that the statement is true in both directions.

B) Assume that 8 | 2n where n is an integer.

C) Let m ∈ {n ∈ Z : 8 | (n+ 4)}.

D) Let m ∈ {2k : k ∈ N}.

E) Assume that 8 | (2k + 4).
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Lecture 8

Notes:

(i) A single counter example proves that (∀x ∈ S, P (x)) is false.

Claim: Every positive even integer is composite.

This claim is false since 2 is even but 2 is prime.

(ii) A single example does not prove that (∀x ∈ S, P (x)) is true.

Claim: Every even integer at least 4 is composite.

This is true but we cannot prove it by saying ”6 is an even integer and is composite.”
We must show this is true for an arbitrary even integer x. (Idea: 2 | x so there
exists a k ∈ N such that 2k = x and k 6= 1.)

(iii) A single example does show that (∃x ∈ S, P (x)) is true.

Claim: Some even integer is prime.

This claim is true since 2 is even and 2 is prime.

(iv) What about showing that (∃x ∈ S, P (x)) is false?

Idea: (∃x ∈ S, P (x)) is false ≡ ∀x ∈ S,¬P (x) is true. This idea is central for proof
by contradiction which we will see later.
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Lecture 8

Which of the following are true?

(i) ∀x ∈ R,∀y ∈ R, x3 − y3 = 1

(ii) ∃x ∈ R,∃y ∈ R, x3 − y3 = 1

(iii) ∀x ∈ R,∃y ∈ R, x3 − y3 = 1

(iv) ∃x ∈ R,∀y ∈ R, x3 − y3 = 1



Lecture 8

List all elements of the set:

{n ∈ Z : n > 1 ∧ ((m ∈ Z ∧m > 0 ∧m | n)⇒ (m = 1 ∨m = n))} ∩ {n ∈ Z : n | 42}
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Lecture 9

Rewrite the following using as few English words as possible.

(i) No multiple of 15 plus any multiple of 6 equals 100.

(ii) Whenever three divides both the sum and difference of two integers, it also divides each
of these integers.
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Lecture 9

Write the following statements in (mostly) plain English.

(i) ∀m ∈ Z, ((∃k ∈ Z,m = 2k)⇒ (∃` ∈ Z, 7m2 + 4 = 2`))

(ii) n ∈ Z⇒ (∃m ∈ Z,m > n)

23



Lecture 10

Example: Prove that if x ∈ R is such that x3 + 7x2 < 9, then x < 1.1.
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Lecture 10

How many years has it been since the Toronto Maple Leafs have won the Stanley Cup?

A) -3

B) 49

C) 1000000

D) 1500
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Lecture 10

Example: Let n ∈ Z such that n2 is even. Show that n is even.

Direct Proof: As n2 is even, there exists a k ∈ Z such that

n · n = n2 = 2k.

Since the product of two integers is even if and only if at least one of the integers is even, we
conclude that n is even.

Proof By Contradiction: Suppose that n2 is even. Assume towards a contradiction that
n is odd. Then there exists a k ∈ Z such that n = 2k + 1. Now,

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

Hence, n2 is odd, a contradiction since we assumed in the statement that n2 is even. Thus n is
even.
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Lecture 10

Example: Prove that
√

2 is irrational.

Proof: Assume towards a contradiction that
√

2 = a
b ∈ Q with a, b ∈ N (Think: Why is it

okay to use N instead of Z?).

Proof 1: Assume further that a and b share no common factor (otherwise simplify the
fraction first). Then 2b2 = a2. Hence a is even. Write a = 2k for some integer k. Then
2b2 = a2 = (2k)2 = 4k2 and canceling a 2 shows that b2 = 2k2. Thus b2 is even and hence b is
even. This implies that a and b share a common factor, a contradiction.

Proof 2 (Well Ordering Principle): Let

S = {n ∈ N : n
√

2 ∈ N}.

Since b ∈ S, we have that S is nonempty. By the Well Ordering Principle, there must be a least
element of S, say k. Now, notice that

k(
√

2− 1) = k
√

2− k ∈ N

(positive since
√

2 >
√

1 = 1). Further,

k(
√

2− 1)
√

2 = 2k − k
√

2 ∈ N

and so k(
√

2− 1) ∈ S. However, k(
√

2− 1) < k which contradicts the definition of k. Thus,
√

2
is not rational.

Proof 3 (Infinite Descent): Isolating from
√

2 = a
b , we see that 2b2 = a2. Thus a2 is even

hence a is even. Write a = 2k for some integer k. Then 2b2 = a2 = (2k)2 = 4k2. Hence b2 = 2k2

and so b is even. Write b = 2` for some integer `. Then repeating the same argument shows that
k is even. So a = 2k = 4m for some integer m. Since we can repeat this argument indefinitely
and no integer has infinitely many factors of 2, we will (eventually) reach a contradiction. Thus,√

2 is not rational.
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Lecture 11

Let f(x) be the function defined by

f : (0,∞)→ (0,∞)

x 7→ x2.

Prove for all y ∈ (0,∞) there exists a unique x ∈ (0,∞) such that f(x) = y
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Lecture 11

Theorem: (Division Algorithm) Let a ∈ Z and b ∈ N. Then ∃!q, r ∈ Z such that a = bq + r
where 0 ≤ r < b.

Proof: Existence: Use the Well Ordering Principle on the set

S = {a− bq : a− bq ≥ 0 ∧ q ∈ Z}

Uniqueness:

Suppose that a = q1b+ r1 with 0 ≤ r1 < b. Also, suppose that a = q2b+ r2 with 0 ≤ r2 < b
and r1 6= r2. Without loss of generality, we can assume r1 < r2.

Then 0 < r2 − r1 < b and (q1 − q2)b = r2 − r1.

Hence b | (r2 − r1). By Bounds By Divisibility, b ≤ r2 − r1 which contradicts the fact that
r2 − r1 < b.

Therefore, the assumption that r1 6= r2 is false and in fact r1 = r2. But then (q1 − q2)b =
r2 − r1 implies q1 = q2.
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Lecture 12

Let n ∈ Z. Consider the following implication.

If (∀x ∈ R, x ≤ 0 ∨ x+ 1 > n), then n = 1.

The contrapositive of this implication is

A) If n = 1, then (∀x ∈ R, x ≤ 0 ∨ x+ 1 > n).

B) If n = 1, then (∃x ∈ R, x > 0 ∧ x+ 1 ≤ n).

C) If n 6= 1, then (∃x ∈ R, x ≥ 0 ∧ x+ 1 < n).

D) If n 6= 1, then (∀x ∈ R, x ≤ 0 ∨ x+ 1 > n).

E) None of the above.
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Lecture 12

Try some of the following problems:

• min{a, b} ≤ a+b
2 for all real numbers a and b.

• Let x be real. Then x2 − x > 0 if and only if x 6∈ [0, 1].

• If r is irrational, then 1
r is irrational.

• There do not exist integers p and q satisfying p2 − q2 = 10.

• The complete real solution to x2 + y2 − 2y = −1 is (x, y) = (0, 1).

• Let S and T be sets with respect to a universe U . Prove that S ∩ T ⊆ S ∪ T .

• Let a, b, c ∈ Z. Prove that if a - b and a | (b+ c), then a - c.
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Lecture 13

Prove that
n∑

i=1

i =
n(n+ 1)

2

holds for all natural numbers n.
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Lecture 13

Examine the following induction “proofs”. Find the mistake

Question: For all n ∈ N, n > n+ 1.

Proof: Let P (n) be the statement: n > n + 1. Assume that P (k) is true for some integer
k ≥ 1. That is, k > k + 1 for some integer k ≥ 1. We must show that P (k + 1) is true, that is,
k+ 1 > k+ 2. But this follows immediately by adding one to both sides of k > k+ 1. Since the
result is true for n = k + 1, it holds for all n by the Principle of Mathematical Induction.

Question: All horses have the same colour. (Cohen 1961).

Proof:

Base Case: If there is only one horse, there is only one colour.

Inductive hypothesis and step: Assume the induction hypothesis that within any set of
n horses for any n ∈ N, there is only one colour. Now look at any set of n+ 1 horses. Number
them: 1, 2, 3, ..., n, n+ 1. Consider the sets {1, 2, 3, ..., n} and {2, 3, 4, ..., n+ 1}. Each is a set of
only n horses, therefore by the induction hypothesis, there is only one colour. But the two sets
overlap, so there must be only one colour among all n+ 1 horses.
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Lecture 14

Prove P (n) : 6 | (2n3 + 3n2 + n) holds ∀n ∈ N.
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Lecture 14

Let {xn} be a sequence defined by x1 = 4, x2 = 68 and

xm = 2xm−1 + 15xm−2 for all m ≥ 3

Prove that xn = 2(−3)n + 10 · 5n−1 for n ≥ 1.

Solution: We proceed by induction.

Base Case: For n = 1, we have

x1 = 4 = 2(−3)1 + 10 · 50 = 2(−3)n + 10 · 5n−1.

Inductive Hypothesis: Assume that

xk = 2(−3)k + 10 · 5k−1

is true for some k ∈ N.

Inductive Step: Now, for k + 1,

xk+1 = 2xk + 15xk−1 Only true if k ≥ 2!!!

= 2(2(−3)k + 10 · 5k−1) + 15xk−1

= 4(−3)k + 20 · 5k−1 + 15xk−1

= ...?
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Lecture 14

Suppose x1 = 3, x2 = 5 and for all m ≥ 3,

xm = 3xm−1 + 2xm−2.

Prove that xn < 4n for all n ∈ N.
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Lecture 15

Fibonacci Sequence Definition: Define a sequence by f1 = 1, f2 = 1 and

fn = fn−1 + fn−2 For all n ≥ 3

so f3 = 2, f4 = 3, f5 = 5, and so on.

(i) Prove that
n∑

r=1

f2r = fnfn+1 for all n ∈ N.

(ii) Prove that fn <
(
7
4

)n
for all n ∈ N.
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Lecture 16

A statement P (n) is proved true for all n ∈ N by induction.

In this proof, for some natural number k, we might:

A) Prove P (1). Prove P (k). Prove P (k + 1).

B) Assume P (1). Prove P (k). Prove P (k + 1).

C) Prove P (1). Assume P (k). Prove P (k + 1).

D) Prove P (1). Assume P (k). Assume P (k + 1).

E) Assume P (1). Prove P (k). Assume P (k + 1).

38



Lecture 17

Example: Prove that gcd(3a+ b, a) = gcd(a, b) using the definition directly.
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Lecture 18

Prove that gcd(3s+ t, s) = gcd(s, t) using GCDWR.
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Lecture 18

Use the Euclidean Algorithm to compute gcd(120, 84) and then use back substitution to find
integers x and y such that gcd(120, 84) = 120x+ 84y.

41



Lecture 19

Prove or disprove the following:

(i) If n ∈ N then gcd(n, n+ 1) = 1.

(ii) Let a, b, c ∈ Z. If ∃ x, y ∈ Z such that ax2 + by2 = c then gcd(a, b) | c.

(iii) Let a, b, c ∈ Z. If gcd(a, b) | c then ∃ x, y ∈ Z such that ax2 + by2 = c.
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Lecture 20

Which of the following statements is false?

A) ∀a ∈ Z, ∀b ∈ Z, (gcd(a, b) ≤ b ∧ gcd(a, b) ≤ a)

B) ∀a ∈ Z, ∀b ∈ Z, (gcd(a, b) 6= 0 =⇒ (a 6= 0) ∨ (b 6= 0))

C) ∀a ∈ Z, ∀b ∈ Z, (gcd(a, b) | a ∧ gcd(a, b) | b)

D) ∀a ∈ Z, ∀b ∈ Z, (((c | a) ∧ (c | b)) ∧ gcd(a, b) 6= 0 =⇒ c ≤ gcd(a, b))

E) ∀a ∈ Z, ∀b ∈ Z, gcd(a, b) ≥ 0

43



Lecture 20

Example: Let a, b, c ∈ Z. Prove if gcd(ab, c) = 1 then gcd(a, c) = gcd(b, c) = 1.

Example: State the converse of the previous statement and prove or disprove.
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Lecture 21

Use the Extended Euclidean Algorithm to find integers x and y such that 408x + 170y =
gcd(408, 170).
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Lecture 21

Use the Extended Euclidean Algorithm to find integers x and y such that 399x − 2145y =
gcd(399,−2145).
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Lecture 22

How many multiples of 12 are positive divisors of 2940? What are they?
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Lecture 23

Find x, y ∈ Z such that 143x+ 253y = gcd(143, 253).

Determine which of the following equations are solvable for integers x and y:

(i) 143x+ 253y = 11

(ii) 143x+ 253y = 155

(iii) 143x+ 253y = 154
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Lecture 24

Let a, b, x, y ∈ Z.

Which one of the following statements is true?

A) If ax+ by = 6, then gcd(a, b) = 6.

B) If gcd(a, b) = 6, then ax+ by = 6.

C) If a = 12b+ 18, then gcd(a, b) = 6.

D) If ax+ by = 1, then gcd(6a, 6b) = 6.

E) If gcd(a, b) = 3 and gcd(x, y) = 2, then gcd(ax, by) = 6.
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Lecture 24

Find all non-negative integer solutions to 15x− 24y = 9 where x ≤ 20 and y ≤ 20.
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Lecture 25

Congruence is an Equivalence Relation (CER)

Let n ∈ N. Let a, b, c ∈ Z. Then

(i) (Reflexivity) a ≡ a (mod n).

(ii) (Symmetry) a ≡ b (mod n)⇒ b ≡ a (mod n).

(iii) (Transitivity) a ≡ b (mod n) and b ≡ c (mod n)⇒ a ≡ c (mod n).
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Lecture 25

Properties of Congruence (PC) Let a, a′, b, b′ ∈ Z. If a ≡ a′ (mod m) and b ≡ b′

(mod m), then

(i) a+ b ≡ a′ + b′ (mod m)

(ii) a− b ≡ a′ − b′ (mod m)

(iii) ab ≡ a′b′ (mod m)
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Lecture 27

What is the last digit of 532310 + 922?
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Lecture 27

Solve 9x ≡ 6 (mod 15).
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Lecture 28

Which of the following satisfies x ≡ 40 (mod 17) ?

(Do not use a calculator.)

A) x = 173

B) x = 155 + 193 − 4

C) x = 5 · 18100

D) x = 2 · 3 · 5 · 7 · 11 · 13

E) x = 170 + 171 + 172 + 173 + 174 + 175 + 176
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Lecture 29

Solve the following equations in Z14. Express answers as [x] where 0 ≤ x < 14.

i) [75]− [x] = [50]

ii) [10][x] = [1]

iii) [10][x] = [2]

Hint: Rewrite these using congruences.
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Lecture 29

Find the additive and multiplicative inverses of [7] in Z11. Give your answers in the form [x]
where 0 ≤ x ≤ 10.
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Lecture 29

The following are equivalent [TFAE]

• a ≡ b (mod m)

• m | (a− b)

• ∃k ∈ Z, a− b = km

• ∃k ∈ Z, a = km+ b

• a and b have the same remainder when divided by m

• [a] = [b] in Zm.

Theorem: [LCT 2] Let a, c ∈ Z and let m ∈ N. Let gcd(a,m) = d. The equation [a][x] = [c]
in Zm has a solution if and only if d | c. Moreover, if [x] = [x0] is one particular solution, then
the complete solution is{

[x0], [x0 + m
d ], [x0 + 2m

d ], . . . , [x0 + (d− 1)md ]
}
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Lecture 30

Find the remainder when 792 is divided by 11.
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Lecture 30

Let p be a prime. Prove that if p - a and r ≡ s (mod (p− 1)), then ar ≡ as (mod p) for any
r, s ∈ Z.
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Lecture 31

Theorem: [Chinese Remainder Theorem (CRT) If
gcd(m1,m2) = 1, then for any choice of integers a1 and a2, there exists a solution to the
simultaneous congruences

n ≡ a1 (mod m1)

n ≡ a2 (mod m2)

Moreover, if n = n0 is one integer solution, then the complete solution is n ≡ n0 (mod m1m2).

Theorem: (Generalized CRT (GCRT)) If m1,m2, . . . ,mk are integers and gcd(mi,mj) = 1
whenever i 6= j, then for any choice of integers a1, a2, . . . , ak, there exists a solution to the
simultaneous congruences

n ≡ a1 (mod m1)

n ≡ a2 (mod m2)

...

n ≡ ak (mod mk)

Moreover, if n = n0 is one integer solution, then the complete solution is

n ≡ n0 (mod m1m2 . . .mk)
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Lecture 32

Which of the following is equal to [53]242 + [5]−1 in Z7?

(Do not use a calculator.)

A) [5]

B) [4]

C) [3]

D) [2]

E) [1]
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Lecture 32

For what integers is x5 + x3 + 2x2 + 1 divisible by 6?
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Lecture 32

(i) Show that x = 2129 solves 2x ≡ 1 (mod 131).

(ii) Use the square and multiply algorithm to find the remainder when 2129 is divided by 131.

(iii) Solve 2x ≡ 3 (mod 131) for 0 ≤ x ≤ 130.

64



Lecture 33

Let p = 2, q = 11 and e = 3

(i) Compute n, φ(n) and d.

(ii) Compute C ≡M e (mod n) when M = 8 (reduce to least nonnegative C).

(iii) Compute R ≡ Cd (mod n) when C = 6 (reduce to least nonnegative R).
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Lecture 34

Express the following in standard form

(i) z = (1−2i)−(3+4i)
5−6i

(ii) w = i2015
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Lecture 35

Solve z2 = iz̄ for z ∈ C
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Lecture 35

Find a real solution to

6z3 + (1 + 3
√

2i)z2 − (11− 2
√

2i)z − 6 = 0
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Lecture 35

Prove the following for z ∈ C

(i) z ∈ R if and only if z = z̄.

(ii) z is purely imaginary if and only if z = −z̄.
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Lecture 36

Let [x] be the inverse of [241] in Z1001, if it exists, where 0 ≤ x < 1001. Determine the sum
of the digits of x.

A) 7

B) 9

C) 11

D) 12

E) [x] does not exist
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Lecture 36

How many integers x satisfy all of the following three conditions?

x ≡ 6 (mod 13)

4x ≡ 3 (mod 7)

−1000 < x < 1000

A) 1

B) 7

C) 13

D) 22

E) 91

71



Lecture 36

To prove |z + w| ≤ |z|+ |w|, it suffices to prove that

|z + w|2 ≤ (|z|+ |w|)2 = |z|2 + 2|zw|+ |w|2

since the modulus is a positive real number. Using the Properties of Modulus and the Properties
of Conjugates, we have

|z + w|2 = (z + w)(z + w) PM

= (z + w)(z̄ + w̄) PCJ

= zz̄ + zw̄ + wz̄ + ww̄

= |z|2 + zw̄ + zw̄ + |w|2 PCJ and PM

Now, from Properties of Conjugates, we have that

zw̄ + zw̄ = 2<(zw̄) ≤ 2|zw̄| = 2|zw|

and hence

|z + w|2 = |z|2 + zw̄ + zw̄ + |w|2 ≤ |z|2 + 2|zw|+ |w|2

completing the proof.
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Lecture 37

Express the following in terms of polar coordinates:

(i) −3

(ii) 1− i
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Lecture 37

(i) Write cis(15π/6) in standard form.

(ii) Write −3
√

2 + 3
√

6i in polar form.
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Lecture 38

Write (
√

3− i)10 in standard form.
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Lecture 39

Find all eighth roots of unity in standard form.
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Lecture 40

What is the value of

∣∣∣∣(−√3 + i
)5∣∣∣∣ ?

A) 16i

B) 27

C) 32

D) −45

E) 64
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Lecture 40

Simplify (x5 + x2 + 1)(x+ 1) + (x3 + x+ 1) in Z2[x]
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Lecture 41

Compute the quotient and the remainder when

x4 + 2x3 + 2x2 + 2x+ 1

is divided by g(x) = 2x2 + 3x+ 4 in Z5[x].
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Lecture 41

In Z7[x], what is the remainder when 4x3 + 2x+ 5 is divided by x+ 6?
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Lecture 41

Prove that there does not exist a real linear factor of

f(x) = x8 + x3 + 1.
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Lecture 42

Prove that a polynomial over any field F of degree n ≥ 1 has at most n roots.
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Lecture 42

Factor iz3 + (3− i)z2 + (−3− 2i)z− 6 as a product of linear factors. Hint: There is an easy
to find integer root!
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Lecture 43

Factor x3 − 32
15x

2 + 1
5x+ 2

15 as a product of irreducible polynomials over R.
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Lecture 43

Prove that
√

5 +
√

3 is irrational.
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Lecture 44

How many of the following statements are true?

• Every complex cubic polynomial has a complex root.

• When x3 + 6x− 7 is divided by a quadratic polynomial ax2 + bx+ c in R[x],
then the remainder has degree 1.

• If f(x), g(x) ∈ Q[x], then f(x)g(x) ∈ Q[x].

• Every non-constant polynomial in Z5[x] has a root in Z5.

A) 0

B) 1

C) 2

D) 3

E) 4

86



Lecture 44

Prove that a real polynomial of odd degree has a real root.
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