## Week 9 List of Theorems

RSA Theorem (RSA)
Let $p$ and $q$ be two distinct primes. If we define the following variables

1. $n=p q$ and $\phi(n)=(p-1)(q-1)$, and
2. $e$ is a positive integer, $2 \leq e<\phi(n)$, such that $\operatorname{gcd}(e, \phi(n))=1$, and
3. $d$ is a positive integer, $2 \leq d<\phi(n)$, such that $e d \equiv 1(\bmod \phi(n))$, and
4. $M$ is an integer such that $0 \leq M<n$, and
5. $C$ is an integer, $0 \leq C<n$, such that $C \equiv M^{e}(\bmod n)$, and
6. $R$ is an integer, $0 \leq R<n$, such that $R \equiv C^{d}(\bmod n)$,
then $R=M$.

Properties of Conjugates (PCJ)
If $z$ and $w$ are complex numbers, then

1. $\overline{z+w}=\bar{z}+\bar{w}$.
2. $\overline{z w}=\bar{z} \bar{w}$.
3. $\overline{\bar{z}}=z$.
4. $z+\bar{z}=2 \operatorname{Re}(z)$.
5. $z-\bar{z}=2 i \operatorname{Im}(z)$.

Properties of Modulus (PM)
If $z$ and $w$ are complex numbers, then

1. $|z|=0$ if and only if $z=0$.
2. $|\bar{z}|=|z|$.
3. $|z|^{2}=z \bar{z}$.
4. $|z w|=|z||w|$.
5. $|z+w| \leq|z|+|w|$.
