Week 8 List of Theorems

Linear Congruence Theorem 1 (LCT 1)

Let $gcd(a, m) = d \ge 1$. The linear congruence $ax \equiv c \pmod{m}$ has a solution if and only if $d \mid c$.

Moreover, if x_0 is one solution, then the complete solution is $x \equiv x_0 \pmod{\frac{m}{d}}$.

Equivalently, $x \equiv x_0, x_0 + \frac{m}{d}, x_0 + 2\frac{m}{d}, \dots, x_0 + (d-1)\frac{m}{d} \pmod{m}$.

Linear Congruence Theorem 2 (LCT 2)

Let $gcd(a, m) = d \ge 1$. The equation [a][x] = [c] in \mathbb{Z}_m has a solution if and only if $d \mid c$. Moreover, if $[x_0]$ is one solution, then the complete solution in \mathbb{Z}_m is

 $\left\{ [x_0], [x_0 + \frac{m}{d}], \cdots, [x_0 + (d-1)\frac{m}{d}] \right\}.$

Existence of Inverses in \mathbb{Z}_p (INV \mathbb{Z}_p)

Let p be a prime number. If [a] is any non-zero element in \mathbb{Z}_p , then $[a]^{-1}$ exists.

Fermat's Little Theorem $(F\ell T)$

Let $a \in \mathbb{Z}$. If p is a prime and $p \nmid a$, then $a^{p-1} \equiv 1 \pmod{p}$.

Corollary to Fermat's Little Theorem

For any integer a and any prime p, $a^p \equiv a \pmod{p}$.

Chinese Remainder Theorem (CRT)

If $gcd(m_1, m_2) = 1$, then for any choice of $a_1, a_2 \in \mathbb{Z}$, there exists a solution to the simultaneous congruences

$$n \equiv a_1 \pmod{m_1}$$

 $n \equiv a_2 \pmod{m_2}$.

Moreover, if n_0 is one solution, then the complete solution is $n \equiv n_0 \pmod{m_1 m_2}$.

Splitting the Modulus (SM)

Let m_1 and m_2 be coprime positive integers. Then for any two integers x and a,

$$\begin{cases} x \equiv a \pmod{m_1} \\ x \equiv a \pmod{m_2} \end{cases}$$
 (simultaneously) $\iff x \equiv a \pmod{m_1 m_2}$.