Week 8 List of Theorems

Linear Congruence Theorem 1 (LCT 1)
Let $\operatorname{gcd}(a, m)=d \geq 1$. The linear congruence $a x \equiv c(\bmod m)$ has a solution if and only if $d \mid c$.
Moreover, if x_{0} is one solution, then the complete solution is $x \equiv x_{0}\left(\bmod \frac{m}{d}\right)$.
Equivalently, $x \equiv x_{0}, x_{0}+\frac{m}{d}, x_{0}+2 \frac{m}{d}, \ldots, x_{0}+(d-1) \frac{m}{d}(\bmod m)$.
Linear Congruence Theorem 2 (LCT 2)
Let $\operatorname{gcd}(a, m)=d \geq 1$. The equation $[a][x]=[c]$ in \mathbb{Z}_{m} has a solution if and only if $d \mid c$. Moreover, if $\left[x_{0}\right]$ is one solution, then the complete solution in \mathbb{Z}_{m} is

$$
\left\{\left[x_{0}\right],\left[x_{0}+\frac{m}{d}\right], \cdots,\left[x_{0}+(d-1) \frac{m}{d}\right]\right\}
$$

Existence of Inverses in $\mathbb{Z}_{p}\left(I N V \mathbb{Z}_{p}\right)$
Let p be a prime number. If $[a]$ is any non-zero element in \mathbb{Z}_{p}, then $[a]^{-1}$ exists.
Fermat's Little Theorem (F८T)
Let $a \in \mathbb{Z}$. If p is a prime and $p \nmid a$, then $a^{p-1} \equiv 1(\bmod p)$.
Corollary to Fermat's Little Theorem
For any integer a and any prime $p, a^{p} \equiv a(\bmod p)$.
Chinese Remainder Theorem (CRT)
If $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$, then for any choice of $a_{1}, a_{2} \in \mathbb{Z}$, there exists a solution to the simultaneous congruences

$$
\begin{array}{rll}
n & \equiv a_{1} & \left(\bmod m_{1}\right) \\
n & \equiv a_{2} & \left(\bmod m_{2}\right)
\end{array}
$$

Moreover, if n_{0} is one solution, then the complete solution is $n \equiv n_{0}\left(\bmod m_{1} m_{2}\right)$.
Splitting the Modulus (SM)
Let m_{1} and m_{2} be coprime positive integers. Then for any two integers x and a,

$$
\left\{\begin{array}{l}
x \equiv a \quad\left(\bmod m_{1}\right) \\
x \equiv a \quad\left(\bmod m_{2}\right)
\end{array} \quad(\text { simultaneously }) \Longleftrightarrow x \equiv a \quad\left(\bmod m_{1} m_{2}\right)\right.
$$

