Week 7 List of Theorems

Linear Diophantine Equation Theorem Part 1 (LDET 1)
Let $a, b, c \in \mathbb{Z}$ and $d=\operatorname{gcd}(a, b)$. The linear Diophantine equation $a x+b y=c$ has an integer solution if and only if $d \mid c$.
Linear Diophantine Equation Theorem Part 2 (LDET 2)
Let $a, b, c \in \mathbb{Z}$ and $d=\operatorname{gcd}(a, b) \neq 0$. If $\left(x_{0}, y_{0}\right)$ is one particular integer solution to $a x+b y=c$, then the complete set of integer solutions is

$$
\left\{\left.\left(x_{0}+\frac{b}{d} n, y_{0}-\frac{a}{d} n\right) \right\rvert\, n \in \mathbb{Z}\right\} .
$$

Congruence is an Equivalence Relation (CER))
Let $m \in \mathbb{N}$, and $a, b, c \in \mathbb{Z}$. Then each of the following statements are true.

1. $a \equiv a(\bmod m)$.
2. If $a \equiv b(\bmod m)$, then $b \equiv a(\bmod m)$.
3. If $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$, then $a \equiv c(\bmod m)$.

Properties of Congruence ($P C$)
If $a \equiv a^{\prime}(\bmod m)$ and $b \equiv b^{\prime}(\bmod m)$, then:

1. $a+b \equiv a^{\prime}+b^{\prime}(\bmod m)$;
2. $a-b \equiv a^{\prime}-b^{\prime}(\bmod m) ;$ and
3. $a \cdot b \equiv a^{\prime} \cdot b^{\prime}(\bmod m)$.

Divisibility Rules [Optional]
A positive integer n is divisible by...
a) 2^{k} if and only if the last k digits are divisible by 2^{k}.
b) 3 (or 9) if and only if the sum of the digits is divisible by 3 (or 9).
c) 5^{k} if and only if the last k digits are divisible by 5^{k}.
d) 7 (or 11 or 13) if and only if the alternating sum of triples of digits is divisible by 7 (or 11 or 13). For example

$$
7|123456789 \quad \Leftrightarrow \quad 7|(789-456+123)
$$

e) 11 if and only if the alternating sum of digits is divisible by 11 .

Congruences and Division (CD)
If $a c \equiv b c(\bmod m)$ and $\operatorname{gcd}(m, c)=1$, then $a \equiv b(\bmod m)$.
Congruent Iff Same Remainder (CISR)
Let $a, b \in \mathbb{Z}, m \in \mathbb{N}$. Then $a \equiv b(\bmod m)$ if and only if a and b have the same remainder when divided by m.
Linear Congruence Theorem 1 (LCT 1)
Let $\operatorname{gcd}(a, m)=d \geq 1$. The linear congruence $a x \equiv c(\bmod m)$ has a solution if and only if $d \mid c$.
Moreover, if x_{0} is one solution, then the complete solution is $x \equiv x_{0}\left(\bmod \frac{m}{d}\right)$.
Equivalently, $x \equiv x_{0}, x_{0}+\frac{m}{d}, x_{0}+2 \frac{m}{d}, \ldots, x_{0}+(d-1) \frac{m}{d}(\bmod m)$.

