Week 7 List of Theorems

Linear Diophantine Equation Theorem Part 1 (LDET 1) Let $a, b, c \in \mathbb{Z}$ and $d = \gcd(a, b)$. The linear Diophantine equation ax + by = c has an integer solution if and only if $d \mid c$.

Linear Diophantine Equation Theorem Part 2 (LDET 2)

Let $a, b, c \in \mathbb{Z}$ and $d = \text{gcd}(a, b) \neq 0$. If (x_0, y_0) is one particular integer solution to ax + by = c, then the complete set of integer solutions is

$$\left\{ \left(x_0 + \frac{b}{d}n, y_0 - \frac{a}{d}n\right) \mid n \in \mathbb{Z} \right\}.$$

Congruence is an Equivalence Relation (CER)) Let $m \in \mathbb{N}$, and $a, b, c \in \mathbb{Z}$. Then each of the following statements are true.

1. $a \equiv a \pmod{m}$.

- 2. If $a \equiv b \pmod{m}$, then $b \equiv a \pmod{m}$.
- 3. If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.

Properties of Congruence (PC) If $a \equiv a' \pmod{m}$ and $b \equiv b' \pmod{m}$, then:

- 1. $a + b \equiv a' + b' \pmod{m};$
- 2. $a b \equiv a' b' \pmod{m}$; and
- 3. $a \cdot b \equiv a' \cdot b' \pmod{m}$.

Divisibility Rules [Optional] A positive integer n is divisible by...

- a) 2^k if and only if the last k digits are divisible by 2^k .
- b) 3 (or 9) if and only if the sum of the digits is divisible by 3 (or 9).
- c) 5^k if and only if the last k digits are divisible by 5^k .
- d) 7 (or 11 or 13) if and only if the alternating sum of triples of digits is divisible by 7 (or 11 or 13). For example

 $7 \mid 123456789 \quad \Leftrightarrow \quad 7 \mid (789 - 456 + 123)$

e) 11 if and only if the alternating sum of digits is divisible by 11.

Congruences and Division (CD) If $ac \equiv bc \pmod{m}$ and gcd(m, c) = 1, then $a \equiv b \pmod{m}$.

Congruent Iff Same Remainder (CISR) Let $a, b \in \mathbb{Z}, m \in \mathbb{N}$. Then $a \equiv b \pmod{m}$ if and only if a and b have the same remainder when divided by m.

Linear Congruence Theorem 1 (LCT 1) Let $gcd(a,m) = d \ge 1$. The linear congruence $ax \equiv c \pmod{m}$ has a solution if and only if $d \mid c$. Moreover, if x_0 is one solution, then the complete solution is $x \equiv x_0 \pmod{\frac{m}{d}}$. Equivalently, $x \equiv x_0, x_0 + \frac{m}{d}, x_0 + 2\frac{m}{d}, \dots, x_0 + (d-1)\frac{m}{d} \pmod{m}$.