Week 6 List of Theorems

Fundamental Theorem of Arithmetic (UFT) [Some classes will do this in week 6]
Every integer greater than 1 can be uniquely expressed as a product of primes (apart from the order of the factors).

Infinitely Many Primes (INF P) (known as Euclid's Theorem outside of MATH 135)
The number of primes is infinite.

Finding a Prime Factor (FPF) [Some classes will do this in week 6]
An integer $n>1$ is either prime or contains a prime factor less than or equal to \sqrt{n}.
$G C D$ With Remainders ($G C D W R$)
Let $a, b, q, r \in \mathbb{Z}$. If $a=q b+r$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
$G C D$ Characterization Theorem (GCD CT)
Let $a, b \in \mathbb{Z}$. If d is a positive common divisor of a and b, and $a x+b y=d$ has an integer solution, then $d=\operatorname{gcd}(a, b)$.
Extended Euclidean Algorithm (EEA) (known as Bézout's Lemma outside of MATH 135)
Let $a, b \in \mathbb{Z}$. If $d=\operatorname{gcd}(a, b)$, then d can be computed and there exist $x, y \in \mathbb{Z}$ such that $a x+b y=d$.
Primes and Divisibility (PAD) [Some classes will do this in week 6] (known as Euclid's Lemma outside of MATH 135) If p is a prime and $p \mid a b$, then $p \mid a$ or $p \mid b$.
$G C D$ of One (GCD OO)
Let $a, b \in \mathbb{Z}$. Then $\operatorname{gcd}(a, b)=1$ if and only if there exist integers x and y with $a x+b y=1$.
Division by $G C D$ ($D B G C D$)
Let $a, b \in \mathbb{Z}$, not both 0 . If $d=\operatorname{gcd}(a, b)$, then $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.
Coprimeness and Divisibility (CAD)
Let $a, b, c \in \mathbb{Z}$. If $c \mid a b$ and a, c are coprime, then $c \mid b$.
Divisors from Prime Factorization (DFPF)
If x can be written as $p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{n}^{a_{n}}$ where $p_{1}, p_{2}, \ldots, p_{n}$ are distinct primes and each a_{i} is a natural number, then d is a positive divisor of x if and only if d can be written as $p_{1}^{d_{1}} p_{2}^{d_{2}} \cdots p_{n}^{d_{n}}$ where $0 \leq d_{i} \leq a_{i}$ for each i.
$G C D$ from Prime Factorization (GCD PF)
If a can be written as $p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$ and b can be written as $p_{1}^{b_{1}} \cdots p_{k}^{b_{k}}$ where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes and each a_{i} and b_{i} is a non-negative integer, then $\operatorname{gcd}(a, b)=p_{1}^{d_{1}} \cdots p_{k}^{d_{k}}$ where $d_{i}=\min \left\{a_{i}, b_{i}\right\}$ for each i.

The next two theorems might get pushed to week 7 depending on the class.

Linear Diophantine Equation Theorem Part 1 (LDET 1)
Let $a, b, c \in \mathbb{Z}$ and $d=\operatorname{gcd}(a, b)$. The linear Diophantine equation $a x+b y=c$ has an integer solution if and only if $d \mid c$.

Linear Diophantine Equation Theorem Part 2 (LDET 2)
Let $a, b, c \in \mathbb{Z}$ and $d=\operatorname{gcd}(a, b) \neq 0$. If $\left(x_{0}, y_{0}\right)$ is one particular integer solution to $a x+b y=c$, then the complete set of integer solutions is

$$
\left\{\left.\left(x_{0}+\frac{b}{d} n, y_{0}-\frac{a}{d} n\right) \right\rvert\, n \in \mathbb{Z}\right\} .
$$

