Week 6 List of Theorems

Fundamental Theorem of Arithmetic (UFT) [Some classes will do this in week 6]

Every integer greater than 1 can be uniquely expressed as a product of primes (apart from the order of the factors).

Infinitely Many Primes (INF P) (known as Euclid's Theorem outside of MATH 135) The number of primes is infinite.

Finding a Prime Factor (FPF) [Some classes will do this in week 6]

An integer n>1 is either prime or contains a prime factor less than or equal to \sqrt{n} .

GCD With Remainders (GCD WR)

Let $a, b, q, r \in \mathbb{Z}$. If a = qb + r, then gcd(a, b) = gcd(b, r).

GCD Characterization Theorem (GCD CT)

Let $a, b \in \mathbb{Z}$. If d is a positive common divisor of a and b, and ax + by = d has an integer solution, then $d = \gcd(a, b)$.

Extended Euclidean Algorithm (EEA) (known as Bézout's Lemma outside of MATH 135)

Let $a, b \in \mathbb{Z}$. If $d = \gcd(a, b)$, then d can be computed and there exist $x, y \in \mathbb{Z}$ such that ax + by = d.

Primes and Divisibility (PAD) [Some classes will do this in week 6] (known as Euclid's Lemma outside of MATH 135) If p is a prime and $p \mid ab$, then $p \mid a$ or $p \mid b$.

GCD of One (GCD OO)

Let $a, b \in \mathbb{Z}$. Then gcd(a, b) = 1 if and only if there exist integers x and y with ax + by = 1.

Division by GCD (DB GCD)

Let $a, b \in \mathbb{Z}$, not both 0. If $d = \gcd(a, b)$, then $\gcd(\frac{a}{d}, \frac{b}{d}) = 1$.

Coprimeness and Divisibility (CAD)

Let $a, b, c \in \mathbb{Z}$. If $c \mid ab$ and a, c are coprime, then $c \mid b$.

Divisors from Prime Factorization (DFPF)

If x can be written as $p_1^{a_1}p_2^{a_2}\cdots p_n^{a_n}$ where p_1,p_2,\ldots,p_n are distinct primes and each a_i is a natural number, then d is a positive divisor of x if and only if d can be written as $p_1^{d_1}p_2^{d_2}\cdots p_n^{d_n}$ where $0 \le d_i \le a_i$ for each i.

GCD from Prime Factorization (GCD PF)

If a can be written as $p_1^{a_1} \cdots p_k^{a_k}$ and b can be written as $p_1^{b_1} \cdots p_k^{b_k}$ where p_1, p_2, \dots, p_k are distinct primes and each a_i and b_i is a non-negative integer, then $\gcd(a, b) = p_1^{d_1} \cdots p_k^{d_k}$ where $d_i = \min\{a_i, b_i\}$ for each i.

The next two theorems might get pushed to week 7 depending on the class.

Linear Diophantine Equation Theorem Part 1 (LDET 1)

Let $a, b, c \in \mathbb{Z}$ and $d = \gcd(a, b)$. The linear Diophantine equation ax + by = c has an integer solution if and only if $d \mid c$.

Linear Diophantine Equation Theorem Part 2 (LDET 2)

Let $a, b, c \in \mathbb{Z}$ and $d = \gcd(a, b) \neq 0$. If (x_0, y_0) is one particular integer solution to ax + by = c, then the complete set of integer solutions is

$$\left\{ \left(x_0 + \frac{b}{d}n, y_0 - \frac{a}{d}n \right) \mid n \in \mathbb{Z} \right\}.$$