Week 5 List of Theorems

Here we stop repeating theorems from all previous weeks. Instead we try to contain the relevant weekly theorems in a single file. Notice that the techniques up to week 4 will be important throughout the course.

Fundamental Theorem of Arithmetic (UFT) [Some classes will do this in week 6]
Every integer greater than 1 can be uniquely expressed as a product of primes (apart from the order of the factors).
Infinitely Many Primes (INF P) (known as Euclid's Theorem outside of MATH 135)
The number of primes is infinite.
Finding a Prime Factor (FPF) [Some classes will do this in week 6]
An integer $n>1$ is either prime or contains a prime factor less than or equal to \sqrt{n}.
$G C D$ With Remainders ($G C D$ WR)
Let $a, b, q, r \in \mathbb{Z}$. If $a=q b+r$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
$G C D$ Characterization Theorem (GCD CT)
Let $a, b \in \mathbb{Z}$. If d is a positive common divisor of a and b, and $a x+b y=d$ has an integer solution, then $d=\operatorname{gcd}(a, b)$.

Extended Euclidean Algorithm (EEA) (known as Bézout's Lemma outside of MATH 135)
Let $a, b \in \mathbb{Z}$. If $d=\operatorname{gcd}(a, b)$, then d can be computed and there exist $x, y \in \mathbb{Z}$ such that $a x+b y=d$.

Primes and Divisibility (PAD) [Some classes will do this in week 6] (known as Euclid's Lemma outside of MATH 135)
If p is a prime and $p \mid a b$, then $p \mid a$ or $p \mid b$.

