Week 4 List of Theorems

De Morgan's Laws (DML)Let A and B be statements. Then

 $\neg(A \lor B) \equiv \neg A \land \neg B$ and $\neg(A \land B) \equiv \neg A \lor \neg B$

Bounds by Divisibility (BBD) Let $a, b \in \mathbb{Z}$. If $a \mid b$ and $b \neq 0$, then $|a| \leq |b|$.

Transitivity of Divisibility (TD) Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Divisibility of Integer Combinations (DIC) Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $a \mid c$, then for all $x, y \in \mathbb{Z}$, $a \mid (bx + cy)$.

Division Algorithm (DA) If $a \in \mathbb{Z}$ and $b \in \mathbb{N}$, then there exist unique integers q and r such that a = qb + r where $0 \le r < b$.

Well Ordering Principle (WOP) [Optional] Every nonempty subset of the natural numbers contains a least element.

Principle of Mathematical Induction (POMI) Let P(n) be a statement. If

- 1. P(1) is true.
- 2. $P(k) \Rightarrow P(k+1)$ is true for all $k \in \mathbb{N}$

then P(n) is true for all $n \in \mathbb{N}$.

Principle of Strong Induction (POSI) Let P(n) be a statement. If

- 1. P(1), P(2), ..., P(b) are true for a suitable $b \in \mathbb{N}$.
- 2. $P(1) \wedge P(2) \wedge \cdots \wedge P(k) \Rightarrow P(k+1)$ is true for all $k \in \mathbb{N}$

then P(n) is true for all $n \in \mathbb{N}$.