Week 11 (and 12) List of Theorems

Division Algorithm for Polynomials (DAP)

If $f(x), g(x) \in \mathbb{F}[x]$ and g(x) is not the zero polynomial, then there exist unique $q(x), r(x) \in \mathbb{F}[x]$ such that

f(x) = q(x)g(x) + r(x)

where $\deg(r(x)) < \deg(g(x))$ or r(x) is the zero polynomial.

Remainder Theorem, (RT)The remainder when a polynomial f(x) is divided by (x - c) is f(c).

Factor Theorem (FT) The linear polynomial (x - c) is a factor of the polynomial f(x) if and only if f(c) = 0.

Fundamental Theorem of Algebra (FTA) For all complex polynomials f(x) with $\deg(f(x)) \ge 1$, there exists $x_0 \in \mathbb{C}$ such that $f(x_0) = 0$.

Complex Polynomials of Degree n Have n Roots (CPN) If f(z) is a complex polynomial of degree $n \ge 1$, then f(z) has n roots $c_1, c_2, \ldots, c_n \in \mathbb{C}$ and can be written as $c(z-c_1)(z-c_2)\cdots(z-c_n)$ for some $c \in \mathbb{C}$.

Rational Roots Theorem (RRT) Let $f(x) = a_n x^n + \dots + a_1 x + a_0$ where $a_0, \dots, a_n \in \mathbb{Z}, a_n \neq 0$. If $\frac{p}{q}$ is a root of f(x) with $p, q \in \mathbb{Z}$ and gcd(p, q) = 1, then $p \mid a_0$ and $q \mid a_n$.

Conjugate Roots Theorem (CJRT) Let $f(x) \in \mathbb{R}[x]$. If $c \in \mathbb{C}$ is a root of f(x), then \overline{c} is also a root of f(x).

Real Quadratic Factors (RQF) Let $f(x) \in \mathbb{R}[x]$. If $c \in \mathbb{C}$, $\operatorname{Im}(c) \neq 0$, is a root of f(x), then there exists a real quadratic factor of f(x) with c as a root.

Real Factors of Real Polynomials (RFRP) Let $f(x) \in \mathbb{R}[x]$. Then f(x) can be written as a product of real linear and real quadratic factors.