Week 11 (and 12) List of Theorems

Division Algorithm for Polynomials (DAP)
If $f(x), g(x) \in \mathbb{F}[x]$ and $g(x)$ is not the zero polynomial, then there exist unique $q(x), r(x) \in \mathbb{F}[x]$ such that

$$
f(x)=q(x) g(x)+r(x)
$$

where $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$ or $r(x)$ is the zero polynomial.

Remainder Theorem, ($R T$)
The remainder when a polynomial $f(x)$ is divided by $(x-c)$ is $f(c)$.
Factor Theorem (FT)
The linear polynomial $(x-c)$ is a factor of the polynomial $f(x)$ if and only if $f(c)=0$.

Fundamental Theorem of Algebra (FTA)
For all complex polynomials $f(x)$ with $\operatorname{deg}(f(x)) \geq 1$, there exists $x_{0} \in \mathbb{C}$ such that $f\left(x_{0}\right)=0$.
Complex Polynomials of Degree n Have n Roots (CPN)
If $f(z)$ is a complex polynomial of degree $n \geq 1$, then $f(z)$ has n roots $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{C}$ and can be written as $c\left(z-c_{1}\right)\left(z-c_{2}\right) \cdots\left(z-c_{n}\right)$ for some $c \in \mathbb{C}$.

Rational Roots Theorem (RRT)
Let $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ where $a_{0}, \ldots, a_{n} \in \mathbb{Z}, a_{n} \neq 0$.
If $\frac{p}{q}$ is a root of $f(x)$ with $p, q \in \mathbb{Z}$ and $\operatorname{gcd}(p, q)=1$, then $p \mid a_{0}$ and $q \mid a_{n}$.
Conjugate Roots Theorem (CJRT)
Let $f(x) \in \mathbb{R}[x]$. If $c \in \mathbb{C}$ is a root of $f(x)$, then \bar{c} is also a root of $f(x)$.

Real Quadratic Factors (RQF)
Let $f(x) \in \mathbb{R}[x]$. If $c \in \mathbb{C}, \operatorname{Im}(c) \neq 0$, is a root of $f(x)$, then there exists a real quadratic factor of $f(x)$ with c as a root.
Real Factors of Real Polynomials (RFRP)
Let $f(x) \in \mathbb{R}[x]$. Then $f(x)$ can be written as a product of real linear and real quadratic factors.

