Solve $[15][x]+[7]=[12]$ in \mathbb{Z}_{10}.
Solution: This is equivalent to solving

$$
15 x+7 \equiv 12 \bmod 10
$$

Isolating for x gives

$$
15 x \equiv 5 \bmod 10
$$

Since $15 \equiv 5 \bmod 10$, Properties of Congruences states that

$$
5 x \equiv 5 \bmod 10
$$

This clearly has the solution $x=1$. Hence, by Linear Congruence Theorem 1, we have that

$$
x \equiv 1 \quad \bmod \frac{10}{\operatorname{gcd}(5,10)}
$$

gives the complete set of solutions. Thus, $x \equiv 1 \bmod 2$ or $x \equiv 1,3,5,7,9 \bmod 10$. Since the original question is framed in terms of congruence classes, our answer should be as well and hence

$$
[x] \in\{[1],[3],[5],[7],[9]\} .
$$

For extra practice, see if you can phrase this argument using Linear Congruence Theorem 2.

