## Lecture 9

#### Handout or Document Camera or Class Exercise

Rewrite the following using as few English words as possible.

- (i) No multiple of 15 plus any multiple of 6 equals 100.
- (ii) Whenever three divides both the sum and difference of two integers, it also divides each of these integers.

### Solution:

- (i)  $\forall m, n \in \mathbb{Z}, (15m + 6n \neq 100)$
- (ii)  $\forall m, n \in \mathbb{Z}, ((3 \mid (m+n) \land 3 \mid (m-n)) \Rightarrow 3 \mid m \land 3 \mid n)$

Instructor's Comments: This is the 10 minute mark

### Handout or Document Camera or Class Exercise

Write the following statements in (mostly) plain English.

- (i)  $\forall m \in \mathbb{Z}, ((\exists k \in \mathbb{Z}, m = 2k) \Rightarrow (\exists \ell \in \mathbb{Z}, 7m^2 + 4 = 2\ell))$
- (ii)  $n \in \mathbb{Z} \Rightarrow (\exists m \in \mathbb{Z}, m > n)$

# Solution:

- (i) If m is an even integer, then  $7m^2 + 4$  is even.
- (ii) There is no greatest integer. (Alternatively, for every integer, there exists a greater integer).

## Instructor's Comments: This is the 20 minute mark

#### Contrapositive

**Note:** Proofs are not always easy to discover. Sometimes you can convert a given problem to an easier equivalent problem.

**Example:**  $7 \nmid n \Rightarrow 14 \nmid n \equiv 14 \mid n \Rightarrow 7 \mid n$ 

**Definition:** The contrapositive of  $H \Rightarrow C$  is  $\neg C \Rightarrow \neg H$ .

Note:  $H \Rightarrow C \equiv \neg C \Rightarrow \neg H$ . This follows since

$$H \Rightarrow C \equiv \neg H \lor C$$
$$\equiv C \lor \neg H$$
$$\equiv \neg (\neg C) \lor \neg H$$
$$\equiv \neg C \Rightarrow \neg H$$

or by using a Truth table

| H | C | $H \Rightarrow C$ | $\neg C$     | $\neg H$ | $\neg C \Rightarrow \neg H$ |
|---|---|-------------------|--------------|----------|-----------------------------|
| Т | Т | Т                 | F            | F        | Т                           |
| Т | F | $\mathbf{F}$      | Т            | F        | $\mathbf{F}$                |
| F | Т | Т                 | $\mathbf{F}$ | Т        | Т                           |
| F | F | Т                 | Т            | Т        | Т                           |

Since the third and sixth columns are equal, their headings are logically equivalent.

Instructor's Comments: This is the 32-37 minute mark

**Example:** Let  $x \in \mathbb{R}$ . Prove  $x^3 - 5x^2 + 3x \neq 15 \Rightarrow x \neq 5$ .

**Proof:** We prove the contrapositive. Let x = 5. Then

$$x^{3} - 5x^{2} + 3x = (5)^{3} - 5(5)^{2} + 3(5)$$
  
= 5<sup>3</sup> - 5<sup>3</sup> + 15  
= 15.

**Example:** Suppose  $a, b \in \mathbb{R}$  and  $ab \in \mathbb{R} - \mathbb{Q}$  (the set of irrational numbers). Show either  $a \in \mathbb{R} - \mathbb{Q}$  or  $b \in \mathbb{R} - \mathbb{Q}$ .

**Proof:** Proceed by the contrapositive. Suppose that a is rational and b is rational. Then  $\exists k, \ell, m, n \in \mathbb{Z}$  such that  $a = \frac{k}{\ell}$  and  $b = \frac{m}{n}$  with  $\ell, n \neq 0$ . Then

$$ab = \frac{km}{\ell n} \in \mathbb{Q}$$

as required.

Instructor's Comments: This is the 50 minute mark.